SCHEME OF COURSE WORK

Course Details:

Course Title	: FLEXIBLE AC TRANSMISSION SYSTEMS						
Course Code	: 13EE2215 L P C : 4 0 3						
Program:	: Master of Technology.						
Specialization:	: Power Electronics & Drives						
Semester	: II						
Prerequisites	: Power Electronics and Power Systems						
Courses to which it is a prerequisite : Research							

Course Outcomes (COs): After Completion of the course the student will be able to

1	Understand the operation of different FACTS devices.
2	Select the Controller for different Contingencies.
3	Analyze the different FACTS devices in different stability conditions.
4	Select a appropriate FACTS device for a particular Contingency.

Program Outcomes (POs):

A graduate of Electrical & Electronics Engineering will be able to

1	Be a professional workforce in the area of Static Power Electronics Converters and power electronic
1	converter fed electrical drives and power quality issues.
2	Apply soft computing techniques for Power Electronic Systems and Electric Drives.
3	Understand large scale Power Electronic Converter Systems, Electric Drives and issues involved
	through modeling, analysis and simulation.
4	Apply present day techniques and tools to solve Power electronic and electric drives problems
	relevant to india and other countries.
5	By using state-of-the-art simulation tools such as PLEXIM, SABER, OPAL-RT Lab, dSPACE,
3	MULTISIM , LABVIEW and other Tools.
6	Collaborate with industries on problems of relevance to them while formulating graduate
0	dissertations.
7	Improvise soft skills to students through seminars and organization of technology workshops,
/	writing research/project reports as a part of graduate education
8	Engage in life-long learning through professional bodies such as IEEE. Institute of Engineers
8	(India) ,etc.
0	Imbibe social responsibilities and ethical practices prevailing in a society through professional
9	institutions.

Course Outcome Versus Program Outcomes:

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO-1	S	S	S	S	S	M	S	S	W
CO-2	S	S	S	S	S	S	S	S	W
CO-3	S	S	M	S	S	S	S	S	W
CO-4	S	S	M	S	S	S	S	S	W

S - Strongly correlated, *M* - *Moderately* correlated, *Blank* - *No correlation*

Assessment Methods:	Assignment / Quiz / Seminar / Case Study / Mid-Test / End Exam
---------------------	--

Teaching-Learning and Evaluation

Week	TOPIC / CONTENTS	Course Outcomes	Sample questions	TEACHING- LEARNING STRATEGY	Assessment Method & Schedule
1	Transmission interconnections power flow in an AC system, loading capability limits. Dynamic Stability Considerations. Importance of Controllable parameters.	CO-1	Explain the dynamic Stability Considerations of FACTS Devices Explain the Power Flow in an AC Network	 Lecture through Black Board & LCD Discussion 	Seminar/Mid Test (Week 9-10)
2	Basic types of FACTS controllers, Benefits from FACTS controllers.	CO-1	What are the different Types of FACTS Devices Benefits of FACTS devices	Lecture throughBlack Board & LCDDiscussion	Seminar/Mid Test (Week 9-10)
3	Basic Concept of VSC Single Phase Full Bridge Operation Square Wave Voltage Harmonic for Single Phase Full Bridge	CO-1	Explain Single Phase Bridge converter operation in detail with Diagrams	Lecture throughBlack Board & LCDDiscussion	Seminar/Mid Test (Week 9-10)
4	Three level voltage source converter pulse width modulation converter	CO-1	What is the difference between the two level and three level VSC and explain in detail Explain Three Level Voltage Sourced Converters Explain different Pulse width Modulation Techniques Uesd	Lecture throughBlack Board & LCDDiscussion	Seminar/Mid Test (Week 9-10)
5	Single phase three phase full wave bridge converter transformer connections for 12 pulse 24 and 48 pulse operation	CO-1	Explain in detail the Transformer Connections in 12,24 and 48 Pulse operation with Diagrams	Lecture throughBlack Board & LCDDiscussion	Seminar/Mid Test (Week 9-10)
6	Basic concept of current source Converters in detail	CO-1	Explain the Basic concept of current source Converters in detail wrt Turn off devices	Lecture throughBlack Board & LCDDiscussion	Seminar/Mid Test (Week 9-10)
7	comparison of current source converters with voltage source converters	CO-1	comparison of current source converters with voltage source converters with necessary equations and diagrams	Lecture throughBlack Board & LCDDiscussion	Seminar/Mid Test (Week 9-10)
8	Objectives of Shunt Compensation. Midpoint Voltage Regulation. Voltage Instability Prevention, Improvement of transient stability. Power oscillation damping.	CO-3	Define the Term Compensation and what are the Objectives of Shunt Compensations How a shunt Controller can Compensate for Voltage Instability Prevention, Improvement of transient stability and Power oscillation damping.	 Lecture through Black Board & LCD Discussion 	Seminar/Mid Test (Week 9-10)
9	Seminar by the Students				Seminar (Week 9)
10 11	Methods of controllable VAR generation. 1. Variable Impedance Type Static VAR Generators	Mid-Test	Explain about Variable Type of VAR Generators	 Lecture through Black Board & LCD Discussion 	Week -10 Seminar/Mid Test (Week 17-18)
12	Switching Converter Type VAR Generators Hybrid VAR Generators.	CO-4	Explain about Switching Type of VAR Generators Explain about Hybrid Type of VAR Generators	Lecture throughBlack Board & LCDDiscussion	Seminar/Mid Test (Week 17-18)
13	SVC and STATCOM The regulation and slope transfer function and dynamic performance, transient stability enhancement and power oscillation damping operating point control and summary of compensator control.	CO-3	Explain SVC and STATCOM wrt its Regulation Slope, Transfer Function and Dynamic performance Explain SVC and STATCOM wrt its VAR reserve	Lecture throughBlack Board & LCDDiscussion	Seminar/Mid Test (Week 17-18)
14	Comparison of SVC and STATCOM Concept of series capacitive compensation. Improvement of Transient Stability. Power oscillation and damping, sub-synchronous oscillation damping.	CO-3	Compare of SVC and STATCOM wrt its Perforance Define the Term Compensation and what are the Objectives of Series Compensations How a Series Controllers improve Transient Stability, Power	Lecture through Black Board & LCD Discussion	Seminar/Mid Test (Week 17-18)

			Oscillations damping and sub- synchronous Resonance			
15	Functional requirements of GTO Thyristor Controlled Series Capacitor(GCSC), Thyristor Switched Series Capacitor(TSSC)	CO-2	Explain the Functional requirements of GTO Thyristor Controlled Series Capacitor(GCSC), Thyristor Switched Series Capacitor(TSSC)	 Lecture through Black Board & LCD Discussion 	Seminar/Mid Test (Week 17-18)	
16	Thyristor Controlled Series Capacitor(TCSC) control schemes for GCSC TSSC and TCSC	CO-2	Explain about the control Schemes of GCSC,TSSC and TCSC	 Lecture through Black Board & LCD Discussion 	Seminar/Mid Test (Week 17-18)	
17	STUDENTS SEMINAR					
18	Mid-Test 2					
19/20	END EXAM					