Model Template for Scheme of Course Work

to be submitted by the Faculty of B.Tech/M.Tech/MCA I semester on or before 11.10.2013 to bhanucvk@gvpce.ac.in and yadavalliraghu@yahoo.com

SCHEME OF COURSE WORK

Course Details:

Course Title	: EXPERIMENTAL TECHNIQUES IN STRUCTURAL ENGG. Lab.				
Course Code	: 13CE2208	L P C	: 0 3 2		
Program:	: M. Tech.				
Specialization:	: Structural Engineering				
Semester	I:				
Prerequisites	: Concrete Technology, Strength of Materials, Structural Analysis.				
Courses to which it is a prerequisite : None					

Course Outcomes (COs):

At the end of the course, the student will be able to:

1	Draw stress-strain curve of concrete.
2	Determine elastic properties of steel.
3	Assess the flexural and shear capacity of R.C beams
4	Measure the strength of concrete using Non-destructive testing methods.
5	Estimate the double shear strength of concrete.

Program Outcomes (POs):

Post graduates will be able to:

1	Synthesize existing and new knowledge in various sub areas of structural engineering
2	Analyse complex engineering problems critically with adequate theoretical background for practical applications.
3	Evaluate a wide range of feasible and optimal solutions after considering safety and environmental factors.
4	Demonstate the ability to pursue research by conducting experiments and extract the relevant information through literature surveys.
5	Use state –of- the- art of modern tools for interpeting the behaviour and modeling of complex engineering structures.
6	Attain the capability to work in multi disciplinary teams to achieve common goals.
7	Demonstrate the knowledge to perform the projects efficiently in multi disciplinary environments after consideration of economical and financial matters.
8	Communicate effectively on complex engineering activities to prepare reports and make presentations.
9	Engage in life-long learning independently to improve knowledge.
10	Understand the responsibility of carrying out professional practices ethically for sustainable development of society.
11	Examine critically and independently one's actions and take corrective measures by learning from mistakes.

Model Template for Scheme of Course Work

to be submitted by the Faculty of B.Tech/M.Tech/MCA I semester on or before 11.10.2013 to bhanucvk@gvpce.ac.in and yadavalliraghu@yahoo.com

Course Outcome versus Program Outcomes:

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO-1	S	S	М	М								М
CO-2	S	S	М	М								М
CO-3	S	S	М	М								М
CO-4	S	S		М								М
CO-5	S	S	S	М	S							М

S - Strongly correlated, M - Moderately correlated, Blank - No correlation

Assignment / Seminar / Mid-Test / End Exam

Teaching-Learning and Evaluation

Week No.	TOPIC / CONTENTS	C / CONTENTS Course Outcomes Sample questions		TEACHING- LEARNING STRATEGY	Assessment Method & Schedule
1&2	Elastic properties of concrete	CO-1	Calculate the young's modulus of concrete Calculate the poisons ratio of concrete	 Lecture/ Demonstration 	
3	Elastic properties of steel	c properties of steel CO-2 Calculate the elastic propertie of steel		 Lecture/ Demonstration 	
4&5	Shear capacity of R.C Beams	CO-3	Assess the Shear capacity of R.C Beams	LectureProblem solving	
6&7	Flexural test on R.C beams	CO-1	Assess the flexural capacity of R.C Beams	□ Lecture	
8	Modulus of rupture of concrete	CO-2	Calculate the Modulus of rupture of given grade of concrete	 Lecture/ Problem solving 	
9	Flexural capacity of R.C slabs	CO-2	Calculate the Flexural capacity of R.C slabs	 Lecture/ Demonstration 	
10	MID TEST - I				•

Model Template for Scheme of Course Work

to be submitted by the Faculty of B.Tech/M.Tech/MCA I semester on or before 11.10.2013 to bhanucvk@gvpce.ac.in and yadavalliraghu@yahoo.com

11	Non- Destructive testing of concrete	CO-2	Calculate the compressive	Lecture/
			strength using rebound	Demonstration
			hammer.	
12	Double shear test on steel rod specimen	CO-3	Calculate the Double shear	Lecture
			test on steel rod specimen	
			-	
13&14	Pre-stressing of beams (pre-tensioning)	CO-3	Estimate the Pre-stressing of	□ Lecture
			heams	Problem solving
15	Dra stragging of hooms (nost tongioning)	CO-3	Estimate the Due studies of	
15	Pre-suessing of beams (post-tensioning)	0-5	Estimate the Pre-stressing of	
			beams	Problem solving
16	Flexural capacity of corrugated decks	CO-4	Calculate the Flexural capacity	□ Lecture
			of corrugated decks	Problem solving
17	Strain measurement using strain gauges	CO-4	Calculate the Strain in a r.c	□ Lecture
			beam using strain gauges	Problem solving
18	MID TEST - II			Ŭ l
	END FXAM			