SCHEME OF COURSE WORK

Course Title	:Electronic Design Automation Tools					
Course Code	:13EC2213 LTPC 4003					
Program:	:M.Tech					
Specialization:	: Embedded Systems and VLSI Design					
Semester	:II					
Prerequisites	: Digital IC Applications, Electronic Circuits ,Digital Design Through					
Verilog, VLSI Design						
Courses to which it is a prerequisite : To carry out further Research Work in VLSI design						

Course Outcomes (Cos):

1	Illustrate different simulations and delay models which are available for HDL.
2	Classify the different synthesis using CAD tools.
3	Design And Analyze Analog And Digital Circuits Using PSPICE model of Transistor.
4	Describe about Analog, Digital & Mixed Signal Simulators.
5	Illustrate PCB Design and also describe the tools used for PCB design.

Course Outcomes versus Program Outcomes:

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	S	S	S	S	S				S		S
CO2	S	S	S	S	S				S		S
CO3	S	S	S	S	S				S		S
CO4	S	S	Μ	S	S				S		S
CO5	S	S		S	S	S			S		S

S - Strongly correlated, M - Moderately correlated, Blank - No correlation

Assessment Methods: Assignment / Quiz / Seminar / Case Study / Mid-Test / End Exam

Week	Topic /Contents	Course Outcomes	Sample questions	Teaching- Learning	Assessment Method &
				Strategy	Schedule
1	Simulation-Types of Simulation, Logic Systems, Working of Logic Simulation	CO1	 Describe about conditional, procedural, continuous and non- blocking assignments with their syntaxes and examples. Define the terms 'Simulation' and 'Synthesis' relevant to HDLs. Explain them with suitable block diagrams. 	Lecture/ Discussion	Assignment I/Quiz-I/Mid-I
2	Cell Models, Delay Models, State Timing Analysis	CO1	 What are the two kinds of delays that can be specified in a procedural assignment statement? Elaborate using an example. What is static timing Analysis? Explain briefly with suitable example 	Lecture/ Discussion	Assignment I/Quiz-I/Mid-I
3	Formal Verification, Switch-Level Simulation, Transistor-Level Simulation	CO1	 1.Explain in detail the following i) Switch-level ii) Transistor-level simulations. 2. Explain about various simulations and their significance with neat flow diagram. 	Lecture/ Discussion	Assignment I/Quiz-I/Mid-I
4	Verilog and Logic Synthesis, VHDL and Logic Synthesis	CO2	 Model an USR and write a verilog code for it and analyse synthesized net list for this model. Write verilog code for 4 to 1 multiplexer using procedural continuous assignments. 	Lecture/ Discussion/ Programming	Assignment I/Quiz-I/Mid-I

5	Memory	CO2	1.Explain about FSM	Lecture/	Assignment
_	Synthesis, FSM		synthesis and	Discussion/	I/Quiz-I/Mid-I
	Synthesis, Memory		performance driven	Programming	
	Synthesis.		synthesis	0 0	
	Performance-Driven		2. Model a		
	Synthesis.		synthesizable RAM		
	~ J		memory using		
			VHDL.		
6	CAD Tools for	CO2	1. Write the features	Lecture/	Assignment
	Simulation and		of MODELSIM.	Discussion/	I/Ouiz-I/Mid-I
	Synthesis: Modelsim		2. Explain Synthesis	Programming	
	and Leonardo		Procedure in	0 0	
	Spectrum		Leonardo Spectrum.		
7	Pspice Models For	CO3	1.Explain about	Lecture/	Assignment
	Transistors		PSPICE Models for	Discussion/	I/Quiz-I/Mid-I
			transistors.	Programming	
			2. Draw the two stage	0 0	
			BJT amplifier in self		
			bias mode coupled by		
			$R_{\rm C}$ network with $R_{\rm S}$		
			= 150Ω , coupling		
			capacitors $C_1 = C_2 =$		
			$10 \ \mu$ F, R ₁ and R ₂ in		
			the first stage, $R_1 =$		
			$200k\Omega$, $R_2 = 50k\Omega$,		
			$R_{c1} = 12\Omega, R_{e1} =$		
			3.6k Ω , $C_{e1} = 15 \mu$		
			F. In second stage: R_1		
			$= 120 K\Omega, R_2 =$		
			$30k\Omega$, $R_{c2} = 6.8k\Omega$,		
			$C_{e2} = 25 \mu F$ with Rc		
			$= 10 k\Omega$ and		
			$V_{CC} = 15V$. Draw its		
			Pspice schematic and		
			using of the Pspice		
			circuit file. Draw its		
			frequency response		
			circuit with Vin =		
			1mv (P-to-P).		
8	A/D & D/A Sample	CO3	1.Explain about the	Lecture/	Assignment
	And Hold		design considerations	Discussion/	I/Quiz-I/Mid-I
	Circuits etc., and		and simulation	Programming	
	Digital System		procedure for D/A		
	Building Blocks		converter		
			circuit using PSPICE		
			Software tool		
			2. Explain PSPICE		
			model for S/H circuit		
9	Mid-Test-1				

10	Design and Analysis of Analog Circuits Using PSPICE.	CO3	 Write spice code for op-amp based integrator to get transient response. Design a two stage RC coupled amplifier and analyze it using PSPICE. Assume the data needed. 	Lecture/ Discussion/ Programming	Assignment II/Quiz-II/Mid- II
11	Analysis of Digital Circuits Using PSPICE.		 for Half Adder circuit. Design a D Flip- Flop using PSpice. Assume the data needed. 	Discussion/ Programming	II/Quiz-II/Mid-II
12	Fundamentals Of Analog And Digital Simulation,	CO4	 Explain the fundamentals of Analog, Digital and Mixed signal simulators in VLSI design. Explain about Event driven simulation with an example. 	Lecture/ Discussion	Assignment II/Quiz-II/Mid- II
13	Mixed Signal Simulator Configurations	CO4	1.ExplaintheanalysisofA/Dconverterinmixedsignal VLSI Design2.Listout2.Listoutandexplaindifferentapproachesformodelingthemixedsignal circuits.	Lecture/ Discussion/ Programming	Assignment II/Quiz-II/Mid- II
14	Understanding Modeling, Integration To CAD Environments.	CO5	1.NamedifferentCADtoolsforsimulationandsynthesis and explainthem in detail2.ExplaintheanalysisofupconverterusingtherelevantCADenvironment.	Lecture/ Discussion	Assignment II/Quiz-II/Mid- II
15	An Overview of High Speed PCB Design	CO5	 1.Explain various issues involved in high speed PCB design. 2.Explain about High 	Lecture/ Discussion	Assignment II/Quiz-II/Mid- II

			Speed PCB Layout		
			techniques.		
16	Design Entry, Simulation and Layout Tools for PCB,	CO5	1.Explain the simulation and layout tools for PCB Design 2.What are the various software tools available for PCB design and layout? Briefly discuss about them	Lecture/ Discussion	Assignment II/Quiz-II/Mid- II
17	Introduction to Orcad PCB Design Tools.	CO5	 Explain in detail ORCAD PCB design tools Explain about 'ORCAD component information' system with the help of neat block diagram. 	Lecture/ Discussion	Assignment II/Quiz-II/Mid- II
18	Mid-Test 2				
19/20	END EXAM				