SCHEME OF COURSE WORK

Course Details:

Course Title	: DIGITAL COMMUNICATIONS					
Course Code	: 13EC1114	LTPC	4003			
Program	: B.Tech.					
Specialization	: ELECTRONICS AND COMMUNICATION ENGINEERING					
Semester	: V					
Prerequisites	: Communication system basics					
Courses to which it is a prerequisite	: Data Communications					

Course Outcomes (COs):

1	Comprehend Pulse Code Modulation and Delta Modulation.
2	Explain the Modulation and Demodulation methods of the Digital Modulation.
3	Evaluate the Error performance of Digital Modulation schemes.
4	Comprehend the efficiency of Source Coding Techniques.
5	Comprehend error detection and correction codes.

Course Outcome versus Program Outcomes:

COs	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PO12
CO-1	S	S	Μ	М	S							Μ
CO-2	S	S	S	S	S							S
CO-3	S	S	S	S	Μ							Μ
CO-4	S	S	S	S	S		Μ					М
CO-5	S	S	S	S	S						Μ	S

S - Strongly correlated, M - Moderately correlated, Blank - No correlation

	Assignment / Quiz / Seminar / Case Study / Mid-Test
Assessment Methods:	/ End Exam

	T	eaching-L	earning and Evaluation		
WEEK	TOPIC / CONTENTS	Course Outco mes	Sample questions	Teaching- Learning Strategy	Assessm ent Method & Schedule
1	Introduction to Digital Communications. PULSE DIGITAL MODULATION : Elements of digital communication systems, Advantages of digital communication systems, Elements of PCM, Sampling.	CO-1	 List out the advantages of Digital Communication over Analog Communication. A PCM system uses a uniform quantizer followed by a v bit encoder. Show that rms signal to quantization noise ratio is approximately given by (1.8+6v)dB Derive the expression for Quantization error in PCM. 	Lecture/ Problem solving	Assignme nt I/Quiz- I/Mid-I
2	Quantization & Coding, Quantization error, Companding in PCM, systems, Differential PCM systems (DPCM).	CO-1	 A signal x(t) is uniformly distributed in the range ± xmax. Calculate maximum signal to noise ratio for this signal. Draw the Characteristics of Compander and write input and output relation for A-Law and μ-Law. 	Lecture/ Problem solving	Assignme nt I/Quiz- I/Mid-I
3	DELTA MODULATION: Delta modulation, adaptive delta modulation, comparison of PCM and DM systems, Noise in PCM and DM systems.	CO-1	1. Consider a sine wave of frequency f_m and amplitude A_m applied to a delta modulator of step size Δ . Show that the slope overload distortion will occur if $A_m > \frac{\Delta}{2\pi f_m T_s}$ where T_s is the sampling period 2. List out the differences between DM, ADM, PCM and DPCM.	Lecture/ Problem solving	Assignme nt I/Quiz- I/Mid-I
4	DIGITAL CARRIER MODULATION TECHNIQUES: Introduction, ASK, FSK, PSK	CO-2	 Explain the modulation and demodulation techniques of ASK with necessary block diagrams. Explain the modulation and demodulation techniques of FSK with necessary block diagrams. Compare the performance of ASK, FSK and PSK. 	Lecture/ Problem solving	Assignme nt I/Quiz- I/Mid-I

5	DPSK, QPSK, M- ary PSK, ASK, FSK, Similarity of BFSK and BPSK.	CO-2	 Explain with the help of block diagram, the modulation and demodulation of DPSK signal schemes. Compare the performance of DPSK with that of PSK. 	Lecture/ Problem solving	Assignme nt I/Quiz- I/Mid-I
6	DIGITAL DATA TRANSMISSION : Base band signal receiver, Probability of error, The optimum filter, Matched filter	CO-3	 Explain the operation of baseband signal receiver. Derive the probability of error for Optimum Filter. 	Lecture/ Problem solving	Assignme nt I/Quiz- I/Mid-I
7	Probability of error using matched filter, Coherent and Non-coherent detection of FSK	CO-3	 Derive the probability of error for Matched Filter. Explain the coherent and Non-Coherent detection of FSK. 	Lecture/ Problem solving	Assignme nt I/Quiz- I/Mid-I
8	Calculation of error probability of ASK, BPSK, BFSK,QPSK	CO-3	 Derive the probability of error for ASK. Derive the probability of error for BPSK. Derive the probability of error for BFSK. Derive the probability of error for QPSK. 	Lecture/ Problem solving	Assignme nt I/Quiz- I/Mid-I
9 10	Mid-Test 1 INFORMATION THEORY: Discrete messages, Concept of amount of information and its properties, Average information.	CO-4	 A three level signal has three characters s₁, s₂, and s₃ with probabilities p₁= p₂, and p₃ =1/2. Find the entropy of the source. A source generates one of the five possible messages during each message interval. The probabilities of these messages are P₁=1/2, P₂=1/16, P₃=1/8, P₄=1/4 and P₅=1/16. Find the information content of each message. 	Lecture/ Problem solving	Assignme nt I/Quiz- I/Mid-I

11	Entropy and its properties, Information rate, Mutual information and its properties.	CO-4	 A message source generates eight message symbols m₁, m₂,m₈ with probabilities 0.25, 0.03, 0.19, 0.16, 0.11, 0.14, 0.08, 0.04 respectively. Give the Huffman code for these symbols and determine the entropy of the source and the average number of bits per symbol. A binary source is emitting an independent sequence of 0's and 1's with probabilities P and 1-P, respectively. Plot the entropy of this source versus P(0<p<1)< li=""> Prove that H(X, Y) = H(X) + H(YJX). </p<1)<>	Lecture/ Problem solving	Assignme nt I/Quiz- I/Mid-I
12	SOURCE CODING: Introduction Advantages Shannon's theorem Shanon-Fano coding	CO-4	 An information source produces 8 different symbols with probabilities ¹/₂, ¹/₄, 1/8, 1/16, 1/32, 1/64, 1/128, and 1/256 respectively. These symbols are encoded as 000,001,010,011,100,110, and 111 respectively. What is the amount of information per symbol? What is the amount of occurring for P(0) and P(1)? What is the efficiency of the code so obtained? Give an efficient code with the help of the method of Shannon. What is the efficiency of the code after Shannon Fano code applied? 	Lecture/ Problem solving	Assignme nt I/Quiz- I/Mid-I

13	Huffman coding, Efficiency calculations, Channel capacity of discrete and analog Channels	CO-4	 For the following construct Huffman code and determine coding efficiency and redundancy. P(m1)=0.30, P(m2)=0.25, P(m3)=0.15, P(m4)=0.12, P(m5)=0.10, P(m6)=0.08, A transmission channel has a bandwidth of 4 kHz and signal to noise power ratio is 31. How much should the bandwidth be in order to have the same channel capacity if S/N ratio is reduced to 15? What will be the signal power required of the bandwidth is reduced to 3 kHz for the source channel capacity. 	Lecture/ Problem solving	Assignme nt I/Quiz- I/Mid-I
14	Capacity of a Gaussian channel, Bandwidth –S/N trade off. LINEAR BLOCK CODES : Introduction, Matrix description of Linear Block codes, Error detection and error Correction capabilities of Linear block codes	CO-4	1. A Gaussian channel has a bandwidth of 4 kHz and a two sideband noise power spectral density $\eta/2$ of 10- 14 watts/Hz. The signal power at the receiver has to be maintained at a level less than or equal to 1/10 of a milliwatt. Calculate the capacity of the channel.2. For the given generator matrix determine the possible code vectors i. $G =$ $\begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 1 & 0 \end{bmatrix}$ 3. Mention the error correction and error detection capabilities of Linear Block Codes.	Lecture/ Problem solving	Assignme nt I/Quiz- I/Mid-I
15	Hamming codes, Binary cyclic codes, Algebraic structure, Encoding and Syndrome	CO-4	1. For a (6,3) systematic linear block code the three parity check bits C ₄ , C ₅ , C ₆ are formed from the following $c_4 =$ $d_1 \oplus d_3$, $c_5 = d_1 \oplus d_2 \oplus$	Lecture/ Problem solving	Assignme nt I/Quiz- I/Mid-I

	calculation, BCH Codes.		 d₃ and c₆ = d₁ ⊕ d₂ Write down the generator matrix Construct all possible code words Find the location of error for R=010111 2. Explain the significance of syndrome calculation. 		
16	CONVOLUTION CODES : Introduction, Encoding of convolution codes, Time domain approach, Graphical approach	CO-5	 Explain the difference between Linear Block Codes and Convolution Codes. Explain in detail about Time domain and Graphical approach for encoding of Convolution Codes. 	Lecture/ Problem solving	Assignme nt I/Quiz- I/Mid-I
17	State, Tree, trellis diagram, decoding using Viterbi algorithm.	CO-5	 Explain in detail about Convolution Codes. Explain Viterbi algorithm with an example. 	Lecture/ Problem solving	Assignme nt I/Quiz- I/Mid-I
18 19/20	M1d-Test 2 END EXAM				

Course Co-ordinator

Module Co-ordinator