SCHEME OF COURSE WORK

Course Title	Design and Analysis OfExperiments								
Course Code	13ME2117	L	T	P	C	4 ()	0	3
Program	M.Tech.								
Specialization	CAAD								
Semester	II								

Course Outcomes (COs):

At the end of the course, the student will be able to

1	Conduct the experiment by using factorial and fractional factorialdesign
2	Fit the best model for the given experimental data
3	Check the adequacy of the regression model using ANOVA
4	Optimize using response surface method

Program Outcomes (POs):

To make the student learn

- 1. Acquire knowledge in latest computer-aided design and analysis tools.
- 2. Create 3D models of real-time components using latest CAD software.
- 3. Acquire technical skills to formulate and solve engineering and industrial problems.
- 4. Carry out analysis for the design of new products.
- 5. Have proficiency to solve problems using modern engineering design tools.
- 6. Have capability to work in multidisciplinary streams.
- 7. Apply project and finance management skills to organise engineering projects.
- 8. Prepare technical reports and present them effectively.
- 9. Engage in lifelong learning.
- 10. Realize professional and ethical responsibilities.
- 11. Conduct surveys, analyse data, plan, design and implement new ideas into action.

Course Outcome versus Program Outcomes:

COs	PO1	PO2	PO ₃	PO4	PO5	PO ₆	PO7	PO8	PO9	PO10	PO11
CO-1			S	S		S					
CO-2		M	S								
CO-3	S				S						
CO-4			S								

S - Strongly correlated, M - Moderately correlated, Blank - No correlation

Teaching - Learning and Evaluation

WEEK	TOPIC / CONTENTS	COU RSE OUT COM ES	SAMPLE QUESTIONS	TEACH ING - LEARN ING STRAT E	ASSE SSME NT METH OD & SCHE DULE
1	guidelines for designing experiments, sampling and sampling distributions, hypothesis testing	CO1	 What are the guidelines for designing experiments. What is the importance of null hypothesis and define alternate hypothesis. 		
2	testing, choice of sample size, analysis of variance, analysis of the fixed effects model	CO1	3. List out the assumptions of Normality.	Lectures	
3	model adequacy checking, sample computer output,regression approach to the analysis of variance.	CO1			Assign ments
4	principles, advantage of factorials, two- factor factorial design, general factorial design	CO2	 Explain Operating Characteristic Curves. What do you mean by a Regression Model. 		
5	fitting response curves and surfaces.2 ^k factorial design: 2 ² design	CO2	3. Explain Least Squares Estimation of the Parameters.	Lectures	
6	2 ³ design, General 2 ^k design, single replicate of 2 ^k design.	CO2			
7	Mid - Test 1	CO1, CO2			
8	one-half fraction of 2 ^k design, one-quarter fraction of 2 ^k design	CO2	 Write about one-half fraction of 2^k design. Briefly explain 		
9	blocking replicated 2 ^k factorial design, confounding in 2 ^k factorial design	CO2	confounding in 3 ^k factorial design	Lectures	

10	3 ^k factorial design, confounding in 3 ^k factorial design	CO2		
11	fractional replication of 3 ^k factorial design, factorials with mixed levels.	CO2	 Write about hypothesis testing in multiple regression. What are the methods for 	
12	Linear regression models, estimation of the parameters	CO3	estimation of parameters in linear regression models. Lectures	
13	hypothesis testing in multiple regression	CO3		
14	Confidence intervals in multiple regression	CO3		
15	prediction of new response observations, regression model diagnostics.	CO3	 Write about steepest ascent method. How do you analyse second order response 	Assign ments
16	Response surface methods: introduction, method of steepest ascent	CO4	surface. 3. What are the methods for prediction of new response observations. Lectures	
17	analysis of second- order response surface, experimental designs for fitting response surfaces	CO4		
18	Mid - Test 2	CO2, CO3, CO4		
19/20	END EXAM	All COs		