SCHEME OF COURSE WORK

Faculty : Smt. A.Nagamalli

Asst. Professor, ECE.

Course Details:

Course Title	: DSP PROCESSOR	S & ARCHITECTURE									
Course Code	: 13EC2113										
Program:	: M.TECH										
Specialization:	: Electronics & Communication Engineering										
Semester	: II										
Prerequisites	: Signals And Systems, Digital Signal Processing										
Courses to which it is a prerequisite :											

Course Outcomes (COs):

CO1	Comprehends the concepts of digital signal processing techniques.
CO2	Design DSP computational building blocks to achieve high speed in DSP processor.
CO3	Comprehends DSP TMS320C54XX architecture and instructions.
CO4	Develop DSP algorithms using DSP processor.
CO5	Interface memory, I/O peripherals and Serial communication devices to DSP processors.

Course Outcome Vs Program Outcomes:

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO-1	S	S	S	S	S	M			M			M
CO-2	S	S	S	S	S	M			M			M
CO-3	S	S	S	S	S	M			S			M
CO-4	S	S	S	S	S	M			M			M
CO-5	S	S	S	S	S	M			S			S

S - Strongly correlated, M - Moderately correlated, Blank - No correlation

Assessment Methods:	Assignment / Quiz / Seminar / Case Study / Mid-Test / End Exam	
---------------------	--	--

Teaching-Learning and Evaluation

Week	Veek TOPIC / CONTENTS		Sample questions	TEACHING- LEARNING STRATEGY	Assessment Method & Schedule
1	UNIT-I	CO-1	1.a) Define a DFT pair.	□ Lecture	Mid-1/Quiz-1/
	Introduction, A Digital signal		b) Explain the	 Discussion 	Assignment 1
	processing system, The		phenomenon of Aliasing?	 Programming 	
	sampling process, discrete		2. Explain about		
	time sequences, Discrete		Convolution, Decimation		
	Fourier Transform (DFT) and		and Interpolation?		
	Fast Fourier transform (FFT).		_		

2	linear time- invariant systems,	CO-1	1. Draw the block	- Lecture	Mid-1/Quiz-1/
	Digital filters, Decimation and interpolation, Number		diagram of Digital filter	Discussion Programming	Assignment -1
	formats for signals and		structure?		
	coefficients in DSP systems,		2. If decimation by a factor of 8 is achieved by decimating by a factor of 2 followed by another factor of 4, Determine the cut off frequencies of the two low pass filters that should be used in the		
		GO 1	decimation?	-	15:14/6 : 4/
3	Dynamic range and Precision, Sources of error in DSP implementations, A/D conversion error, DSP computational errors, D/A conversion errors.	CO-1	1.Specify basic architecture required to implement following operation so that they can be executed in least possible time i) (x1+jy1)*(x2+jy2) ii) 0.5 (x1+4x2)/256	□ Lecture □ Discussion	Mid-1/Quiz-1/ Assignment -1
4	UNIT-II	CO-2	1.Explain how a DSP	- Lecture	
	Basic architectural features, DSP computational building blocks, bus architecture and memory.		processor got specialized features in terms of its architectures?	ⁿ Discussion	Mid-1/Quiz-1/ Assignment -1
5	Data addressing capabilities, address generation unit, programmability and program execution, Speed issues,	CO-2	1.Write a short note on speed issues of DSP processors?	□ Lecture □ Discussion	Mid-1/Quiz-1/ Assignment -1
	Hardware looping.	CO-2	1) How can achieve	□ Lecture	Mid 1/Onia 1/
6	Interrupts, Stacks, Relative branch support, Pipelining and performance.	CO-2	1) How can achieve system level parallelism & pipelining for 8	Discussion	Mid-1/Quiz-1/ Assignment 1
7	Pipelined Depth, Interlocking, branching effects, pipeline programming models.	CO-2	coefficients FIR filter? 2) Implement the 8 coefficient FIR filter design using single and two MAC units?	□ Lecture □ Discussion	Mid-1/Quiz-1/ Assignment 1
8	UNIT-III Commercial digital signal processing devices, Data addressing modes of TMS320C54XX DSPs, data addressing modes of TMS320C54XX processors.	CO-3	1.Explain the functional diagram of CPU TMS320C54XX processor? 2. Explain the multiplier/adder functional diagram of	LectureDiscussion	Mid-1/Quiz-1/ Assignment 1

			CPU TMS320C54XX processor?		
9	Mid-Test 1	CO-1,2 &CO-3			MID TEST-I
10	Memory space of TMS320C54XX processors, program control, TMS320C54XX instructions and programming, On-Chip peripherals.	CO-3	1.Explain about TMS320C54XX processor buses, internal memory organization and CPU?	LectureDiscussionProgramming	MID-2/QUIZ-II/ Assignment 2
11	Interrupts of TMS320C54XX processors, Pipeline operation of TMS320C54XX processors. UNIT-IV The Q-notation, FIR filters.	CO-3	1.Write a short note on Interrupt Mask Register(IMR)/ Interrupt flag register(IFR)?	LectureDiscussionProgramming	MID-2/QUIZ-II/ Assignment 2
12	IIR filters, interpolation filters, Decimation filters, PID controller, adaptive filters, An FFT algorithm for DFT computation.	CO-4	1. Write a code to implement direct form of adaptive FIR filter using least mean square algorithm?	LectureDiscussionProgramming	MID-2/QUIZ-II/ Assignment 2
13	A Butterfly computation, Overflow and scaling, Bit- reversed index generation, An 8-pointr FFT implementation on the TMS320C54XX.	CO-4	1.Write a code for implementation of 9-tap adaptive filter for TMS320C54XX processor?	LectureDiscussionProgramming	MID-2/QUIZ-II/ Assignment 2
14	Computation of the signal spectrum. UNIT-V Memory space organization, External bus interfacing signals.	CO-4	1.Explain how memory and parallel I/O peripherals are interfaced using external bus?	□ Lecture □ Discussion	MID-2/QUIZ-II/ Assignment 2
15	Memory interface, Parallel I/O interface, programmed I/O, interrupts and I/O.	CO-5	Explain how to interface parallel I/O peripherals to programmable DSP devices with an example?	LectureDiscussion	MID-2/QUIZ-II/ Assignment 2
16	Direct memory access (DMA), A Multichannel buffered serial port(McBSP).	CO-5	Explain the operation of multichannel buffer serial port McBSP with block diagram?	□ Lecture □ Discussion	MID-2/QUIZ-II/ Assignment 2
17	McBSP programming, a CODEC interface circuit, CODEC programming, A	CO-5	1.Mention the program registers of PCM 3002 CODEC?	LectureDiscussionProgramming	MID-2/QUIZ-II/ Assignment 2

	CODEC-DSP interface		2.Explain how to	
	example.		configure the CODEC	
			using mode control	
			interface signals?	
18	Mid-Test 2	CO-3,4&		MID TEST-II
		CO-5		
19/20	END EXAM			

Course Coordinator Smt.A.Nagamalli

Module Coordinator Sri. B.Jagadeesh