SCHEME OF COURSE WORK

Course Details:

e Detanst											
Course Title	:Design and Simulation and Power Electronics Circuits (Elective –II)										
Course Code	: 13EE2217			L	Т	Р	С	:4	-	0	3
Program:	: M. Tech.	: M. Tech.									
Specialization:	: Power Electronics And Drives										
Semester	: II										
Prerequisites	: Basic s of Power Electronics										
Courses to which	it is a prerequisite	:									

Course Outcomes (COs): At the end of the course, the student will be able to have knowledge in:

1	Basics of simulation, Analysis of power electronic systems.
2	Different algorithms for analysis, Future trends in simulation.
3	Fourier analysis of harmonics, modeling of power electronic devices.
4	Time domain analysis, Fourier analysis of power electronic devices, Simulation of power electronic circuits for different types of loads.

Program Outcomes (POs): The programme outcomes are achieved through the following means:

 Be a part of competent workforce in the area of Static Power Electronics Converters and power electronic converter fed electrical drives and power quality issues . Apply soft computing techniques for Power Electronic Systems and Electric Drives. Understand large scale Power Electronic Converter Systems, Electric Drives and issues involved through modeling, analysis and simulation. Apply present day techniques and tools to solve Power electronic and electric drives problems relevant to india and other countries To gain necessary skills in using state-of-the-art simulation tools such as PLEXIM, SABER, OPAL-RT Lab, dSPACE, MULTISIM, LABVIEW and other Tools for analysis , design and trouble shooting of power electronics converters and various Electric drives . Collaborate with industries on problems of relevance to them while planning/organizing graduate dissertations towards expanding sphere of interaction. Improve soft skills of students through seminars and organization of technology workshops, writing research/project reports as a part of graduate education. Encourage life-long learning through professional bodies (such as IEEE. Institute of Engineers (India),etc). Imbibe social responsibilities and ethical practices towards creating a work force for national growth. 		
 electrical drives and power quality issues . Apply soft computing techniques for Power Electronic Systems and Electric Drives. Understand large scale Power Electronic Converter Systems, Electric Drives and issues involved through modeling, analysis and simulation. Apply present day techniques and tools to solve Power electronic and electric drives problems relevant to india and other countries To gain necessary skills in using state-of-the-art simulation tools such as PLEXIM, SABER, OPAL-RT Lab, dSPACE, MULTISIM, LABVIEW and other Tools for analysis, design and trouble shooting of power electronics converters and various Electric drives . Collaborate with industries on problems of relevance to them while planning/organizing graduate dissertations towards expanding sphere of interaction. Improve soft skills of students through seminars and organization of technology workshops, writing research/project reports as a part of graduate education. Encourage life-long learning through professional bodies (such as IEEE. Institute of Engineers (India),etc). Imbibe social responsibilities and ethical practices towards creating a work force for national growth. 	1	Be a part of competent workforce in the area of Static Power Electronics Converters and power electronic converter fed
 Apply soft computing techniques for Power Electronic Systems and Electric Drives. Understand large scale Power Electronic Converter Systems, Electric Drives and issues involved through modeling, analysis and simulation. Apply present day techniques and tools to solve Power electronic and electric drives problems relevant to india and other countries To gain necessary skills in using state-of-the-art simulation tools such as PLEXIM, SABER, OPAL-RT Lab, dSPACE, MULTISIM, LABVIEW and other Tools for analysis, design and trouble shooting of power electronics converters and various Electric drives . Collaborate with industries on problems of relevance to them while planning/organizing graduate dissertations towards expanding sphere of interaction. Improve soft skills of students through seminars and organization of technology workshops, writing research/project reports as a part of graduate education. Encourage life-long learning through professional bodies (such as IEEE. Institute of Engineers (India),etc). Imbibe social responsibilities and ethical practices towards creating a work force for national growth. 		electrical drives and power quality issues .
 ³ Understand large scale Power Electronic Converter Systems, Electric Drives and issues involved through modeling, analysis and simulation. ⁴ Apply present day techniques and tools to solve Power electronic and electric drives problems relevant to india and other countries ⁵ To gain necessary skills in using state-of-the-art simulation tools such as PLEXIM, SABER, OPAL-RT Lab, dSPACE, MULTISIM, LABVIEW and other Tools for analysis, design and trouble shooting of power electronics converters and various Electric drives . ⁶ Collaborate with industries on problems of relevance to them while planning/organizing graduate dissertations towards expanding sphere of interaction. ⁷ Improve soft skills of students through seminars and organization of technology workshops, writing research/project reports as a part of graduate education. ⁸ Encourage life-long learning through professional bodies (such as IEEE. Institute of Engineers (India),etc). ⁹ Imbibe social responsibilities and ethical practices towards creating a work force for national growth. 	2	Apply soft computing techniques for Power Electronic Systems and Electric Drives.
 analysis and simulation. 4 Apply present day techniques and tools to solve Power electronic and electric drives problems relevant to india and other countries 5 To gain necessary skills in using state-of-the-art simulation tools such as PLEXIM, SABER, OPAL-RT Lab, dSPACE, MULTISIM, LABVIEW and other Tools for analysis, design and trouble shooting of power electronics converters and various Electric drives . 6 Collaborate with industries on problems of relevance to them while planning/organizing graduate dissertations towards expanding sphere of interaction. 7 Improve soft skills of students through seminars and organization of technology workshops, writing research/project reports as a part of graduate education. 8 Encourage life-long learning through professional bodies (such as IEEE. Institute of Engineers (India),etc). 9 Imbibe social responsibilities and ethical practices towards creating a work force for national growth. 	3	Understand large scale Power Electronic Converter Systems, Electric Drives and issues involved through modeling,
 Apply present day techniques and tools to solve Power electronic and electric drives problems relevant to india and other countries To gain necessary skills in using state-of-the-art simulation tools such as PLEXIM, SABER, OPAL-RT Lab, dSPACE, MULTISIM, LABVIEW and other Tools for analysis, design and trouble shooting of power electronics converters and various Electric drives. Collaborate with industries on problems of relevance to them while planning/organizing graduate dissertations towards expanding sphere of interaction. Improve soft skills of students through seminars and organization of technology workshops, writing research/project reports as a part of graduate education. Encourage life-long learning through professional bodies (such as IEEE. Institute of Engineers (India),etc). Imbibe social responsibilities and ethical practices towards creating a work force for national growth. 		analysis and simulation.
 To gain necessary skills in using state-of-the-art simulation tools such as PLEXIM, SABER, OPAL-RT Lab, dSPACE, MULTISIM, LABVIEW and other Tools for analysis, design and trouble shooting of power electronics converters and various Electric drives. Collaborate with industries on problems of relevance to them while planning/organizing graduate dissertations towards expanding sphere of interaction. Improve soft skills of students through seminars and organization of technology workshops, writing research/project reports as a part of graduate education. Encourage life-long learning through professional bodies (such as IEEE. Institute of Engineers (India),etc). Imbibe social responsibilities and ethical practices towards creating a work force for national growth. 	4	Apply present day techniques and tools to solve Power electronic and electric drives problems relevant to india and other countries
 ⁶ Collaborate with industries on problems of relevance to them while planning/organizing graduate dissertations towards expanding sphere of interaction. ⁷ Improve soft skills of students through seminars and organization of technology workshops, writing research/project reports as a part of graduate education. ⁸ Encourage life-long learning through professional bodies (such as IEEE. Institute of Engineers (India),etc). ⁹ Imbibe social responsibilities and ethical practices towards creating a work force for national growth. 	5	To gain necessary skills in using state-of-the-art simulation tools such as PLEXIM, SABER, OPAL-RT Lab, dSPACE, MULTISIM, LABVIEW and other Tools for analysis, design and trouble shooting of power electronics converters and various Electric drives.
 7 Improve soft skills of students through seminars and organization of technology workshops, writing research/project reports as a part of graduate education. 8 Encourage life-long learning through professional bodies (such as IEEE. Institute of Engineers (India),etc). 9 Imbibe social responsibilities and ethical practices towards creating a work force for national growth. 	6	Collaborate with industries on problems of relevance to them while planning/organizing graduate dissertations towards expanding sphere of interaction.
 8 Encourage life-long learning through professional bodies (such as IEEE. Institute of Engineers (India),etc). 9 Imbibe social responsibilities and ethical practices towards creating a work force for national growth. 	7	Improve soft skills of students through seminars and organization of technology workshops, writing research/project reports as a part of graduate education.
9 Imbibe social responsibilities and ethical practices towards creating a work force for national growth.	8	Encourage life-long learning through professional bodies (such as IEEE. Institute of Engineers (India),etc).
	9	Imbibe social responsibilities and ethical practices towards creating a work force for national growth.

Course Outcome versus Program Outcomes:

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO-1	S	S	S	S	М				
CO-2	S	S	S	S	S	S	М	М	М
CO-3	S	S	S	S	S	М			
CO-4	S	S	S	S	S	S	М	М	

S - Strongly correlated, M - Moderately correlated, Blank - No correlation

Assessment Methods:

Assignment / Quiz / Seminar / Case Study / Mid-Test / End Exam

Teaching-Learning and Evaluation

Week	TOPIC / CONTENTS	Course Outcomes	Sample questions	TEACHING- LEARNG STRATEY	Assessment Method & Schedule
1	UNIT-1 Simulation Techniques-1 Importance of simulation Methods of simulation of power electronic systems	CO-1	Briefly explain 1. Basics of simulation 2. Methods of simulation of power electronic systems	LectureDiscussion	Mid-Test 1 (Week 9) Seminar (Week 1)
2	Analysis of power electronic converters in a sequential manner, coupled and decoupled systems	CO-1 & CO-2	Briefly explain coupled and decoupled analysis of power electronic converter	LectureDiscussion	Mid-Test 1 (Week 9) Seminar (Week 2)
3	UNIT-II Simulation Techniques-1 Various algorithms for steady state solution in power electronic systems	CO-1 & CO-2	Explain different types of algorithms for steady state solution in power electronics	 Lecture Problem solving 	Mid-Test 1 (Week 9) Seminar (Week 3)
4	Future trends in computer simulation	CO-1 & CO-2	What are the Future trends in computer simulation		Mid-Test 1 (Week 9) Seminar (Week 4) Assignment (Week 4)
5	UNIT-III Modeling of power Electronic Devices AC sweep and DC sweep Analysis	CO-3 & CO-4	Explain AC and DC sweep analysis?	 Lecture Problem solving 	Mid-Test 1 (Week 9) Seminar (Week 5)
6	Transients and time domain analysis of power Electronic Devices	CO-3 & CO-4	Explain the importance of Transients and time domain analysis in designing power electronic	□ Lecture	Mid-Test 1 (Week 9) Seminar (Week 6)
7	Fourier series and harmonic components of power Electronic Devices	CO-3 & CO-4	Explain the fourier series analysis of harmonic components in power electronic converters	 Lecture Problem solving 	Mid-Test 1 (Week 9) Seminar (Week 7)
8	BJT, FET ,MOSFET and its model of power Electronic Devices	CO-3 & CO-4	Explain different modeling of switches used as a power electronic device		Mid-Test 1 (Week 9) Seminar (Week 8) Assignment (Week 8)
10	Amplifiers and oscillator and non linear Device	CO-3 & CO-4	Explain the modeling of amplifiers and oscillators	LectureDiscussion	Mid-Test 2 (Week 18) Seminar (Week 9)
11	UNIT-IV Simulation of power electronic circuits Introduction, Simulation and capture, Time domain analysis	CO-1 ,CO-3	Explain time domain analysis of power electronic circuits		Mid-Test 2 (Week 18) Seminar (Week 10)
12	System level integration and analysis	CO-3 & CO-4	Explain System level integration and analysis		Mid-Test 2 (Week 18) Seminar (Week 11)
13	Monte Carlo analysis Sensitivity/ stress analysis, Fourier analysis.	CO-3 & CO-4	Explain Monte Carloanalysis Sensitivity/ stress analysis	 Lecture Problem solving 	Mid-Test 2 (Week 18) Seminar (Week 12)

14	UNIT-V CASE STUDY :Simulation of Converters, Choppers, Inverters feeding R, R-L, and R-L-E loads	CO-3 & CO-4	Explain Simulation of Converters, Choppers, Inverters feeding R, R-L, and R-L-E loads		Mid-Test 2 (Week 18)
15	AC voltage controllers, feeding R, R-L, and R-L-E loads	CO-3 & CO-4	Explain AC voltage controllers, feeding R, R-L, and R-L-E loads	LectureDiscussion	Mid-Test 2 (Week 18) Seminar (Week 14)
16	Cyclo-converters feeding R, R-L, and R-L- E loads	CO-3 & CO-4	Explain Cyclo-converters feeding R, R-L, and R-L-E loads	LectureDiscussion	Mid-Test 2 (Week 18) Seminar
17	Practice of all converter practically in simulation lab	CO-3 & CO-4	Simulate power electronic converters		Mid-Test 2 (Week 18) Seminar (Week 16)
18	Mid-Test 2				
19/20	END EXAM				