SCHEME OF COURSE WORK

Course Details:

Course Title	: Data Structures and Algorithms							
Course Code	: 13CS2101		L P C	403				
Programme:	: M.Tech.							
Specialization:	: CSE							
Semester	:Ist Semester							
Prerequisites	: Graph Theory, Design and Analysis of Algorithms , C							
Courses to which it is a prerequisite : Computer Networks, Data Mining, DBMS								

Course Outcomes (COs):

1	Use the appropriate abstract data type for formulating solutions for the given problem.						
2	Describe priority queues using heaps and compare the complexities of various sorting						
	algorithms						
3	Examine the solution for dynamic equivalence problem using find and smart union algorithms						
	and discover solutions for various graph problems.						
4	Extrapolate various algorithm design techniques with examples and compute amortized analysis						
	for skew heaps, binomial queues, splay trees.						
5	Apply various advanced data structures like red-black trees, heap, AA trees, k-d trees etc in						
	relevant application needed.						

Program Outcomes (POs):

A graduate of M.Tech CSE Specialization will be able to

1	Graduates will demonstrate knowledge in core subjects of Computer Science and Engineering and the ability to learn independently.
2	Graduates will demonstrate the ability to design a software application or process that meets desired
	Specifications within the constraints.
3	Graduates will demonstrate the ability to solve problems relevant to industries and research organizations.
4	Graduates will develop innovative thinking capabilities to promote research in core and trans-disciplinaryareas.
5	Graduates will be familiar with modern engineering software tools and equipment to analyze computer science and engineering problems.
6	Graduates will demonstrate the ability to collaborate with engineers of other disciplines and work on projects requiring multidisciplinary skills.
7	Graduates will acquire project management and finance control abilities.
8	Graduates will be able to communicate effectively in both verbal and written forms.
9	Graduates will engage themselves in lifelong learning in the context of rapid technological changes in computer science and engineering

10	Graduates will demonstrate an appreciation of ethical and social responsibilities in professional and societal context.
11	Graduates will demonstrate the ability in carrying out tasks independently and by reflective learning.

Course Outcome versus Program Outcomes:

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	S	S	S	S	S	M					S
CO2	S	S	S	S	M	M	M				
CO3	S	S	S	S	M	M	M				
CO4	S	S	S	S	M	M					
CO5	S	S	S	S	M	M	M				

S - Strongly correlated, M - Moderately correlated, Blank - $No\ correlation$

Teaching-Learning and Evaluation

Week	TOPIC / CONTENTS	Course Outcomes	Sample questions	TEACHING- LEARNING STRATEGY	Assessment Method & Schedule
1	Lists, Stacks and Queues: Abstract Data Types (ADTs), The List ADT, Vector and list in the STI, Implementation of vector, Implementation of list	CO-1	Compare and contrast between vector and a list.	Lecture / DiscussionProblem solving	Assignment (Week 7-8) Mid-Test 1 (Week 9)
2	The Stack ADT, The Queue ADT. Trees: The Search Tree ADT – Binary Search Trees	CO-1	Give the real time applications of stack .	Lecture / DiscussionProblem solving	Mid-Test 1 (Week 9)
3	AVI. Trees, Splay Trees, B-Trees	CO-2	Demonstrate the operations of	□ Lecture	Mid-Test 1
4	Hashing: General idea, Hash Function, Separate Chaining, Hash Tables Without Linked Lists, Rehashing, Extendible Hashing.	CO-1	Explain different techniques in hashing and discuss their limitations.	Lecture / Discussion Problem solving	Assignment (Week 7-8) Mid-Test 1 (Week 9)
5	Priority Queues: Implementations, Binary Heap, Applications of Priority Queues, <i>d</i> -Heaps, Leftist Heaps	CO-2	Give the applications of priority queues.	Lecture / DiscussionProblem solving	Assignment (Week 7-8) Mid-Test 1 (Week 9)
6	Skew Heaps, Binomial Queues. Sorting: Sorting: A Lower Bound for Simple sorting Algorithms	CO-2,CO-5	Explain the organization of data in binomial queues	Lecture / DiscussionProblem solving	Mid-Test 1 (Week 9)
7	Shellsort, Heapsort, Mergesort, Quicksort, Indirect Sorting, A General Lower Bound for sorting, Bucket Sort, External Sorting.	CO-2	Compare the complexities of merge and quick sort .	Lecture / DiscussionProblem solving	Mid-Test 1 (Week 9) Assignment (Week 7-8)
8	The Disjoint Set Class: Equivalence Relations, The Dynamic Equivalence Problem, Basic Data Structure, Smart Union Algorithms	CO-1,CO-3, CO-4	Explain different Smart union algorithms with an example	Lecture / DiscussionProblem solving	Mid-Test 1 (Week 9)
9	Mid-Test 1				
10	Path Compression, Worst Case of Union -by- Rank and Path Compression, An Application.	CO-1, CO2,CO-3	Explain how path compression takes place and what is the need	Lecture / DiscussionProblem solving	Mid-Test 2 (Week 18)
	Graph Algorithms: Definitions, Topological sort				

11	Shortest-PathAlgorithms,NetworkFlow Problems, Minimum Spanning Tree, Applications of Depth-First Search, introduction to NP- Completeness.	CO-2,CO-3	Give the algorithm for prims algorithm and discuss its complexity	Lecture / Discussion Problem solving	Assignment (Week 15-17) Mid-Test 2 (Week 18)
12	Algorithm Design Techniques: Greedy	CO-4	Give the optimal solution for	Lecture / Discussion	Mid-Test 2
	Algorithms, Divide and Conquer		knapsack problem using greedy method	Problem solving	(Week 18)
13	Dynamic Programming, Randomized Algorithms,	CO-4	Explain the mechanism in	Lecture / Discussion	Mid-Test 2
	Backtracking Algorithms		backtracking algorithms	 Problem solving 	(Week 18)
14	Amortized Analysis: An Unrelated Puzzle, Binomial Queues, Skew Heaps, Fibonacci Heaps, Splay Trees.	CO-5	What are skew heaps.	Lecture / DiscussionProblem solving	Assignment (Week 15-17) Mid-Test 2 (Week 18)
15	Data Structures and Algorithms	CO-5	Give the characteristics of red-blocks	- Lecture / Discussion	Mid-Test 2

Faculty Member