SCHEME OF COURSE WORK

Course Title	: Digital IC Design		
Course Code	: 13EC2212	LPC	403
Program:	: M.Tech		
Specialization:	: VLSI Design & Embedded Systems		
Semester	: II		
Prerequisites	: VLSI Design, Switching Theory & Logic Design		
Courses to which	:		
it is a prerequisite			

Course Outcomes (Cos):

1	Analyze the depth of designing a Digital IC and use the concept of logical effort for Transistor
	sizing.
2	Obtain Proficiency in SPICE modeling of CMOS circuits.
3	Describe the various design entities.
4	Distinguish between Static CMOS design and Dynamic CMOS design.
5	Design Logic gates, Flip-flops, Adders, Registers and RAM etc.

Course Outcomes versus Program Outcomes:

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	S	S										Μ
CO2	S	Μ			Μ							Μ
CO3	S	Μ	Μ									Μ
CO4	S	S	Μ	Μ								Μ
CO5	S	S	Μ	Μ								Μ

S - Strongly correlated, M - Moderately correlated, Blank - No correlation

Assessment Methods: Assignment / Quiz / Seminar / Case Study / Mid-Test / End Exam

Week	Topic /Contents	Course Outcomes	Sample questions	Teaching- Learning Strategy	Assessment Method & Schedule
1	Historical Perspective, Issues in Digital Integrated Circuit Design, Quality Metrics of a Digital Design: Cost of an Integrated Circuit, Functionality and Robustness, Performance, Power and Energy Consumption.	CO1	 Explain the quality metrics of a digital IC design. Define Moore's law. Explain the historical perspective and issues in digital IC design. 	Lecture/ Discussio n	Assignment- I/Quiz-I/Mid- I
2	The MOS Transistor under Static Conditions.	CO2	1.ThedatafromfivemeasurementsmadeonashortchannelNMOSdeviceappearsinbelowTable.Giventhat $V_{DSAT_2^2}$ 0.6Vandk'=100 $\mu A/V$,calculate $V_{T0}, \gamma, \lambda, 2 \phi_F $, and W/L. $No.$ V_{GS} V_{DS} V_{BS} $I_D(\mu A)$ 12.51.801812221.801297322.501361421.8-11146521.8-210392.Explainthe effectofvelocitysaturation on shortchannel devicesandcomparedevices	Lecture/ Problem solving	Assignment- I/Quiz-I/Mid- I
3	Dynamic Behavior, The Actual MOS Transistor- Some Secondary Effects	CO2	 Determine the high-to-low propagation delay for an inverter with a 500nm wide NMOSFET and a 1 μm wide PMOSFET with its output connected to another identical inverter. Assume the default 250nm process. Do consider overlap capacitance. Recall that it is necessary to consider both bottom and sidewall capacitance. You may neglect the resistance and capacitance of the wire connecting the two inverters. Explain the threshold variation and Hot-Carrier effects of a MOS transistor. 	Lecture/ Problem solving	Assignment- I/Quiz-I/Mid- I
4	SPICE Models for the MOS Transistor, Method of Logical Effort for transistor	CO2	1. Explain the methods of logical effort for transistor sizing with necessary examples.	Lecture/ Discussio n	Assignment- I/Quiz-I/Mid- I

5	WIRE: Introduction, A First Glance, Interconnect Parameters - Capacitance, Resistance, and Inductance, Electrical wire models, SPICE wire models.	CO2	 Explain the following interconnect parameters Capacitive Inductive Resistance Determine the Elmore delay from Node a to Node b in the following circuit. 	Lecture/ Problem solving	Assignment- I/Quiz-I/Mid- I
			$\begin{array}{c} H3 \\ R6 \\ b \\ R4 \\ R2 \\ R1 \\ a \\ C5 \\ C4 \\ C3 \\ C3 \\ C3 \\ C3 \\ C3 \\ C3 \\ C3$		
6	Introduction, The Static CMOS Inverter-An Intuitive Perspective, Evaluating the Robustness of the CMOS Inverter: The Static Behavior, Switching Threshold, Noise Margins, Robustness Revisited	CO3	 Give an intuitive perspective of the static CMOS inverter with relevant diagrams. Deduce the noise margins of the CMOS inverter. 	Lecture/ Problem solving	Assignment- I/Quiz-I/Mid- I
7	Performance of CMOS Inverter: The Dynamic Behavior, Computing the Capacitances.	CO3	 Explain the dynamic behavior of CMOS inverter. Represent the parasitic capacitances of a CMOS inverter. 	Lecture/ Problem solving	Assignment- I/Quiz-I/Mid- I
8	Propagation Delay: First- Order Analysis, Propagation Delay from a Design Perspective.	CO3	 Deduce propagation delay of CMOS inverter. Explain design techniques to minimize propagation delay of a gate. 	Lecture/ Discussio n	Assignment- I/Quiz-I/Mid- I
9	Mid-Test-1				
10	Power, Energy, and Energy- Delay: Dynamic Power Consumption, Static Consumption, Perspective: Technology Scaling and its Impact on the Inverter Metrics.	CO3	 List the different types of power consumption of a CMOS inverter? Explain the technology Scaling effects and its impact on the inverter metrics. 	Lecture/ Problem solving	Assignment- II/Quiz- II/Mid-II
11	DESIGNING COMBINATIONAL LOGIC GATES IN CMOS: Introduction, Static CMOS Design: Complementary CMOS, Ratioed Logic, Pass-Transistor Logic.	CO4	 Given the choice between NOR and NAND logic. Which one would you prefer for implementation in complementary CMOS and pseudo-NMOS? State why? Explain how to overcome transistor-sizing problem in level restoring circuits. 	Lecture/ Discussio n	Assignment- II/Quiz- II/Mid-II
12	Dynamic CMOS Design: Dynamic Logic - Basic Principles, Speed and Power Dissipation of Dynamic	CO4	1. What are the signal integrity issues in Dynamic CMOS design? How to overcome those?	Lecture/ Discussio n	Assignment- II/Quiz- II/Mid-II

	Logic, Issues in Dynamic		2. Explain the optimization of		
	Design, Cascading Dynamic		domino logic gates.		
	Gates, Perspectives: How to				
	Choose a Logic Style,				
	Designing Logic for				
	Reduced Supply Voltages				
13	DESIGNING	CO5	1. Explain the timing metrics for	Lecture/	Assignment-
	SEQUENTIAL LOGIC		sequential circuits.	Discussio	II/Quiz-
	CIRCUITS: Introduction,		-	n	II/Mid-II
	Timing Metrics for		2. Explain the bi-stability principle		
	Sequential Circuits,		with the help of appropriate		
	Classification of Memory		diagrams.		
	Elements, Static Latches				
	and Registers: The Bi-				
	stability Principle				
14	Multiplexer-Based Latches,	CO5	1. Explain the operation of	Lecture/	Assignment-
	Master-Slave Edge-		negative and positive latches based	Discussio	II/Quiz-
	Triggered Register, Low-		on multiplexers.	n	II/Mid-II
	Voltage Static Latches,				
	Static SR Flip-Flops—		2. Explain the operation of master		
	Writing Data by Pure Force		slave positive edge triggered		
			register using multiplexers. Also		
			narrate the corresponding timing		
			properties.		
1.7		005		T	
15	Dynamic Latches and	CO5	1. Explain the operation of $C^2 \times C^2$	Lecture/	Assignment-
15	Dynamic Latches and Registers: Dynamic	CO5	1. Explain the operation of C^2MOS based dual edge triggered	Lecture/ Discussio	Assignment- II/Quiz-
15	Dynamic Latches and Registers: Dynamic Transmission-Gate Edge-	CO5	1. Explain the operation of C^2MOS based dual edge triggered register.	Lecture/ Discussio n	Assignment- II/Quiz- II/Mid-II
15	Dynamic Latches and Registers: Dynamic Transmission-Gate Edge- triggered Registers, C ² MOS A Clock Share	CO5	 Explain the operation of C²MOS based dual edge triggered register. Design up edge triggered 	Lecture/ Discussio n	Assignment- II/Quiz- II/Mid-II
15	Dynamic Latches and Registers: Dynamic Transmission-Gate Edge- triggered Registers, C ² MOS—A Clock Skew	CO5	 Explain the operation of C²MOS based dual edge triggered register. Design -ve edge triggered register TSPC 	Lecture/ Discussio n	Assignment- II/Quiz- II/Mid-II
15	Dynamic Latches and Registers: Dynamic Transmission-Gate Edge- triggered Registers, C ² MOS—A Clock Skew Insensitive Approach, True	CO5	 Explain the operation of C²MOS based dual edge triggered register. Design -ve edge triggered register in TSPC. 	Lecture/ Discussio n	Assignment- II/Quiz- II/Mid-II
15	Dynamic Latches and Registers: Dynamic Transmission-Gate Edge- triggered Registers, C ² MOS—A Clock Skew Insensitive Approach, True Single-Phase Clocked Pagister (TSPCP)	CO5	 Explain the operation of C²MOS based dual edge triggered register. Design -ve edge triggered register in TSPC. 	Lecture/ Discussio n	Assignment- II/Quiz- II/Mid-II
15	Dynamic Latches and Registers: Dynamic Transmission-Gate Edge- triggered Registers, C ² MOS—A Clock Skew Insensitive Approach, True Single-Phase Clocked Register (TSPCR)	CO5	 Explain the operation of C²MOS based dual edge triggered register. Design -ve edge triggered register in TSPC. 	Lecture/ Discussio n	Assignment- II/Quiz- II/Mid-II
15	Dynamic Latches and Registers: Dynamic Transmission-Gate Edge- triggered Registers, C ² MOS—A Clock Skew Insensitive Approach, True Single-Phase Clocked Register (TSPCR) Pipelining: An approach to optimize sequential circuits	CO5 CO5	 Explain the operation of C²MOS based dual edge triggered register. Design -ve edge triggered register in TSPC. Explain NORA-CMOS logic for pipelined structure. 	Lecture/ Discussio n Lecture/ Discussio	Assignment- II/Quiz- II/Mid-II Assignment- II/Quiz
15	DynamicLatchesandRegisters:DynamicTransmission-GateEdge-triggeredRegisters,C²MOS—A Clock SkewInsensitiveApproach,TrueSingle-PhaseClockedRegister (TSPCR)Pipelining:An approach tooptimize sequential circuits,LatchvsPage of the second	CO5 CO5	 Explain the operation of C²MOS based dual edge triggered register. Design -ve edge triggered register in TSPC. Explain NORA-CMOS logic for pipelined structure. 	Lecture/ Discussio n Lecture/ Discussio	Assignment- II/Quiz- II/Mid-II Assignment- II/Quiz- II/Mid-II
15	Dynamic Latches and Registers: Dynamic Transmission-Gate Edge- triggered Registers, C ² MOS—A Clock Skew Insensitive Approach, True Single-Phase Clocked Register (TSPCR) Pipelining: An approach to optimize sequential circuits, Latch- vs. Register-Based Pipelines NORA-CMOS	CO5 CO5	 Explain the operation of C²MOS based dual edge triggered register. Design -ve edge triggered register in TSPC. Explain NORA-CMOS logic for pipelined structure. Discuss how to optimize a 	Lecture/ Discussio n Lecture/ Discussio n	Assignment- II/Quiz- II/Mid-II Assignment- II/Quiz- II/Mid-II
15	Dynamic Latches and Registers: Dynamic Transmission-Gate Edge- triggered Registers, C ² MOS—A Clock Skew Insensitive Approach, True Single-Phase Clocked Register (TSPCR) Pipelining: An approach to optimize sequential circuits, Latch- vs. Register-Based Pipelines, NORA-CMOS— A Logic Style for Pipelined	CO5 CO5	 Explain the operation of C²MOS based dual edge triggered register. Design -ve edge triggered register in TSPC. Explain NORA-CMOS logic for pipelined structure. Discuss how to optimize a digital integrated circuit using 	Lecture/ Discussio n Lecture/ Discussio n	Assignment- II/Quiz- II/Mid-II Assignment- II/Quiz- II/Mid-II
15	DynamicLatchesandRegisters:DynamicTransmission-GateEdge-triggeredRegisters,C ² MOS—A Clock SkewInsensitiveApproach,TrueSingle-PhaseClockedRegister (TSPCR)Pipelining:An approach tooptimize sequential circuits,Latch-vs.Register-BasedPipelines,NORA-CMOS—A LogicStyle for PipelinedStructures	CO5 CO5	 Explain the operation of C²MOS based dual edge triggered register. Design -ve edge triggered register in TSPC. Explain NORA-CMOS logic for pipelined structure. Discuss how to optimize a digital integrated circuit using pipelining with the help of an another structure. 	Lecture/ Discussio n Lecture/ Discussio n	Assignment- II/Quiz- II/Mid-II Assignment- II/Quiz- II/Mid-II
15	Dynamic Latches and Registers: Dynamic Transmission-Gate Edge- triggered Registers, C ² MOS—A Clock Skew Insensitive Approach, True Single-Phase Clocked Register (TSPCR) Pipelining: An approach to optimize sequential circuits, Latch- vs. Register-Based Pipelines, NORA-CMOS— A Logic Style for Pipelined Structures	CO5 CO5	 Explain the operation of C²MOS based dual edge triggered register. Design -ve edge triggered register in TSPC. Explain NORA-CMOS logic for pipelined structure. Discuss how to optimize a digital integrated circuit using pipelining with the help of an example. 	Lecture/ Discussio n Lecture/ Discussio n	Assignment- II/Quiz- II/Mid-II Assignment- II/Quiz- II/Mid-II
15 16	DynamicLatchesandRegisters:DynamicTransmission-GateEdge-triggeredRegisters,C²MOS—A Clock SkewInsensitiveApproach,TrueSingle-PhaseClockedRegister (TSPCR)Pipelining:An approach tooptimize sequential circuits,Latch-vs.Register-BasedPipelines,NORA-CMOS—A LogicStyle for PipelinedStructures	CO5 CO5 CO5	 Explain the operation of C²MOS based dual edge triggered register. Design -ve edge triggered register in TSPC. Explain NORA-CMOS logic for pipelined structure. Discuss how to optimize a digital integrated circuit using pipelining with the help of an example. Explain about Bistable and 	Lecture/ Discussio n Lecture/ Discussio n	Assignment- II/Quiz- II/Mid-II Assignment- II/Quiz- II/Mid-II
15 16 17	DynamicLatchesandRegisters:DynamicTransmission-GateEdge-triggeredRegisters,C2MOS—A Clock SkewInsensitiveApproach,TrueSingle-PhaseClockedRegister (TSPCR)Pipelining:An approach tooptimize sequential circuits,Latch-vs.Register-BasedPipelines,NORA-CMOS—A Logic Style for PipelinedStructuresNon-BistableSequentialCircuits:TheSchmitt	CO5 CO5 CO5	 Explain the operation of C²MOS based dual edge triggered register. Design -ve edge triggered register in TSPC. Explain NORA-CMOS logic for pipelined structure. Discuss how to optimize a digital integrated circuit using pipelining with the help of an example. Explain about Bistable and Nonbistable sequential circuits. 	Lecture/ Discussio n Lecture/ Discussio n Lecture/ Discussio	Assignment- II/Quiz- II/Mid-II Assignment- II/Quiz- II/Mid-II Assignment- II/Quiz-
15 16 17	DynamicLatchesandRegisters:DynamicTransmission-GateEdge-triggeredRegisters,C²MOS—A Clock SkewInsensitiveApproach,TrueSingle-PhaseClockedRegister (TSPCR)Pipelining:An approach tooptimize sequential circuits,Latch-vs.Register-BasedPipelines,NORA-CMOS—A Logic Style for PipelinedStructuresNon-BistableSequentialCircuits:TheSchmitttrigger,Monostable	CO5 CO5 CO5	 Explain the operation of C²MOS based dual edge triggered register. Design -ve edge triggered register in TSPC. Explain NORA-CMOS logic for pipelined structure. Discuss how to optimize a digital integrated circuit using pipelining with the help of an example. Explain about Bistable and Nonbistable sequential circuits. 	Lecture/ Discussio n Lecture/ Discussio n Lecture/ Discussio n	Assignment- II/Quiz- II/Mid-II Assignment- II/Quiz- II/Mid-II Assignment- II/Quiz- II/Mid-II
15 16 17	DynamicLatchesandRegisters:DynamicTransmission-GateEdge-triggeredRegisters,C ² MOS—A Clock SkewInsensitiveApproach,TrueSingle-PhaseClockedRegister (TSPCR)Pipelining:An approach tooptimize sequential circuits,Latch-vs.Register-BasedPipelines,NORA-CMOS—A Logic Style for PipelinedStructuresNon-BistableSequentialCircuits:TheSchmitttrigger,MonostableSequential Circuits,Astable	CO5 CO5 CO5	 Explain the operation of C²MOS based dual edge triggered register. Design -ve edge triggered register in TSPC. Explain NORA-CMOS logic for pipelined structure. Discuss how to optimize a digital integrated circuit using pipelining with the help of an example. Explain about Bistable and Nonbistable sequential circuits. Write short notes on clock skew. 	Lecture/ Discussio n Lecture/ Discussio n Lecture/ Discussio n	Assignment- II/Quiz- II/Mid-II Assignment- II/Quiz- II/Mid-II Assignment- II/Quiz- II/Mid-II
15 16 17	DynamicLatchesandRegisters:DynamicTransmission-GateEdge-triggeredRegisters,C ² MOS—A Clock SkewInsensitiveApproach,Single-PhaseClockedRegister (TSPCR)Pipelining:An approach tooptimize sequential circuits,Latch-vs.Register-BasedPipelines,NORA-CMOS—A Logic Style for PipelinedStructuresNon-BistableSequentialCircuits:TheSchmitttrigger,MonostableSequential Circuits,AstableCircuits,Perspective:	CO5 CO5 CO5	 Explain the operation of C²MOS based dual edge triggered register. Design -ve edge triggered register in TSPC. Explain NORA-CMOS logic for pipelined structure. Discuss how to optimize a digital integrated circuit using pipelining with the help of an example. Explain about Bistable and Nonbistable sequential circuits. Write short notes on clock skew. 	Lecture/ Discussio n Lecture/ Discussio n Lecture/ Discussio n	Assignment- II/Quiz- II/Mid-II Assignment- II/Quiz- II/Mid-II Assignment- II/Quiz- II/Mid-II
15 16 17	DynamicLatchesandRegisters:DynamicTransmission-GateEdge-triggeredRegisters,C²MOS—A Clock SkewInsensitiveApproach,TrueSingle-PhaseClockedRegister (TSPCR)Pipelining:An approach tooptimize sequential circuits,Latch-vs.Register-BasedPipelines,NORA-CMOS—A Logic Style for PipelinedStructuresNon-BistableSequentialCircuits:TheSchmitttrigger,MonostableSequential Circuits,AstableCircuits,Perspective:ChoosingaClocking	CO5 CO5 CO5	 Explain the operation of C²MOS based dual edge triggered register. Design -ve edge triggered register in TSPC. Explain NORA-CMOS logic for pipelined structure. Discuss how to optimize a digital integrated circuit using pipelining with the help of an example. Explain about Bistable and Nonbistable sequential circuits. Write short notes on clock skew. 	Lecture/ Discussio n Lecture/ Discussio n Lecture/ Discussio n	Assignment- II/Quiz- II/Mid-II Assignment- II/Quiz- II/Mid-II II/Quiz- II/Mid-II
15 16 17	DynamicLatchesandRegisters:DynamicTransmission-GateEdge-triggeredRegisters,C²MOS—A Clock SkewInsensitiveApproach,TrueSingle-PhaseClockedRegister (TSPCR)Pipelining:An approach tooptimize sequential circuits,Latch-vs.Register-BasedPipelines,NORA-CMOS—A Logic Style for PipelinedStructuresNon-BistableSequentialCircuits:TheSchmitttrigger,MonostableSequential Circuits,AstableCircuits,Perspective:ChoosingaClockingStrategy.	CO5 CO5 CO5	 Explain the operation of C²MOS based dual edge triggered register. Design -ve edge triggered register in TSPC. Explain NORA-CMOS logic for pipelined structure. Discuss how to optimize a digital integrated circuit using pipelining with the help of an example. Explain about Bistable and Nonbistable sequential circuits. Write short notes on clock skew. 	Lecture/ Discussio n Lecture/ Discussio n Lecture/ Discussio n	Assignment- II/Quiz- II/Mid-II Assignment- II/Quiz- II/Mid-II II/Quiz- II/Mid-II
15 16 17 18	DynamicLatchesandRegisters:DynamicTransmission-GateEdge-triggeredRegisters,C²MOS—A Clock SkewInsensitiveApproach,TrueSingle-PhaseClockedRegister (TSPCR)Pipelining:An approach tooptimize sequential circuits,Latch-vs.Register-BasedPipelines,NORA-CMOS—A Logic Style for PipelinedStructuresNon-BistableSequentialCircuits:TheSchmitttrigger,MonostableSequential Circuits,AstableCircuits,Perspective:ChoosingaClockingStrategy.Mid-Test 2Strategy	CO5 CO5 CO5	 Explain the operation of C²MOS based dual edge triggered register. Design -ve edge triggered register in TSPC. Explain NORA-CMOS logic for pipelined structure. Discuss how to optimize a digital integrated circuit using pipelining with the help of an example. Explain about Bistable and Nonbistable sequential circuits. Write short notes on clock skew. 	Lecture/ Discussio n Lecture/ Discussio n Lecture/ Discussio n	Assignment- II/Quiz- II/Mid-II Assignment- II/Quiz- II/Mid-II II/Quiz- II/Mid-II