SCHEME OF COURSE WORK

Course Title	:Digital IC Applications					
Course Code	:13EC1108 LTPC 4103					
Program:	:B.Tech					
Specialization:	: Electronics and Communication Engineering					
Semester	:IV					
Prerequisites	: Electronic Devices, Electronic Circuits, Switching T	heory and L	ogic Design.			
Courses to which	:					
it is a prerequisite						

Course Outcomes (Cos):

1	Gain Knowledge on different logic families.
2	Analyze CMOS steady state and dynamic electrical behavior
3	Comprehend concepts of VHDL.
4	Design and model combinational and sequential logic circuits using VHDL.
5	Discuss internal structure, Read and Write timing operations of Memories.

Course Outcomes versus Program Outcomes:

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	S	Μ	Μ	S								Μ
CO2	S	Μ	Μ	Μ								Μ
CO3			Μ		S							Μ
CO4	S		Μ		Μ							Μ
CO5			Μ		Μ							Μ

S - Strongly correlated, M - Moderately correlated, Blank - No correlation

Assessment Methods: Assignment / Quiz / Seminar / Case Study / Mid-Test / End Exam

		Courses		Teaching-	Assessment
Week	Topic /Contents	Course	Sample questions	Learning	Method &
	-	Outcomes		Strategy	Schedule
1	Introduction to	CO1	1. Design a 4-input CMOS OR-	Lecture/	Assignment
	logic families,		AND-INVERT gate. Explain the	Design	I/Quiz-I/Mid-I
	CMOS logic.		circuit with the help of logic diagram	e	
	e		encult with the help of logic diagram		
			and function table?		
			2. Design $f = (A+BC)^2$ using CMOS		
			logic.	-	
2	CMOS steady state	CO2	1. Derive the expressions for rise	Lecture/	Assignment
	and dynamic		time and fall time of a CMOS	Problem	I/Quiz-I/Mid-I
	electrical behavior.		inverter.	solving	
			2. Analyze the fall time of CMOS		
			inverter output with $R_L = 100\Omega$, V_L		
			= 2.5V and C_L =100PF. Assume V_L		
			as stable state voltage.		
3	NMOS, PMOS,	CO1	1. Design $f = (A+BC)'$ using NMOS	Lecture/	Assignment
	RTL, DCTL.		logic.	Design/	I/Quiz-I/Mid-I
			2. Design & Explain the operation of	Problem	
			2-input NAND gate using RTL.	solving	
4	DTL, HTL, IIL.	CO1	1. Design & Explain the operation of	Lecture/	Assignment
			2-input NAND gate using DTL.	Problem	I/Quiz-I/Mid-I
			2. Explain the operation of inverter	solving	
			using IIL.		
5	TTL, Schottky	CO1	1. Draw the circuit diagram of basic	Lecture/	Assignment
	TTL, Emitter		TTL NAND gate and explain the	Problem	I/Quiz-I/Mid-I
	coupled logic,		three parts with the help of	solving	
	Comparison of		functional operation.		
	logic families.		2. Compare CMOS, TTL and ECL		
			with reference to logic levels, D.C		
			noise margin, propagation delay and		
			fan-out.		
6	CMOS logic	CO2	1. What is interfacing? How it can be	Lecture/	Assignment
	families,		done.	Problem	I/Quiz-I/Mid-I
	CMOS/TTL		2. Explain about low voltage CMOS	solving	
	interfacing, low		logic and interfacing.		
	voltage CMOS				
	logic and				
	interfacing,				
	Familiarity with				
	standard 74xx and				
	CMOS 40xx series				
L	ICs-specifications.			_	
7	Introduction to	CO3	1. Write VHDL code for prime	Lecture/	Assignment
	VHDL, Program		number detector using conditional	Discussion	I/Quiz-I/Mid-I
	structure, data		signal assignment statement.		
	types and		2. List out various data types of		
	constants,		VHDL. Explain each one with		
	operators, data		example.		
	flow design				
	elements				
8	Behavioral design	CO3	1. List out various types of	Lecture/	Assignment
	elements,		structural-flow design elements of	Discussion	I/Quiz-I/Mid-I
	Structural design		VHDL. Explain any one with		
	elements, functions		example.		
	and procedures,		2. Explain with example the syntax		
	libraries and		and the function of the following		
	packages,		VHDL statements?		
	simulation and		(a) Process statement		

	synthesis.		(b) If, else and else if statements		
			(c) Case statement		
			(d) Loop statement		
9	Mid-Test-1				
10	Decoders, encoders.	CO4	 Design 5 to 32 decoder using 3 to 8 decoders. Write behavioral VHDL program for a 74x148. 	Lecture/ Design/ Programming	Assignment II/Quiz-II/Mid-II
11	Three state devices, Multiplexers and demultiplexers.	CO4	 Design a 32 to 1 multiplexer using four 74×151 multiplexers and 74X139 decoder? Write a VHDL program for the Same in Structural flow style. Design a 3 input 5 bit multiplexer. Write the truth table and draw the logic diagram. Provide the dataflow VHDL program of the same. 	Lecture/ Design/ Programming	Assignment II/Quiz-II/Mid-II
12	Code Converters, Parity circuits, comparators.	CO4	 Design and write VHDL code for 3 bit binary to gray code converter. Design 8 bit comparator using 74x85 ICs. And write structural style VHDL code. 	Lecture/ Design/ Programming	Assignment II/Quiz-II/Mid-II
13	Adders & subtractors, Basic Concepts of ALUs, Combinational multipliers.	CO4	 Design a full adder using two half adders and write VHDL code for it using structural design modeling. Design a 4×4 combinational multiplier and write the necessary VHDL program in data flow model. 	Lecture/ Design/ Programming	Assignment II/Quiz-II/Mid-II
14	Barrel shifter, floating-point encoder, dual priority encoder.	CO4	 Design a barrel shifter for 8-bit using three control inputs. Write a VHDL program for the same in data flow style. Write VHDL code for fixed point to floating point conversion. 	Lecture/ Design/ Programming	Assignment II/Quiz-II/Mid-II
15	Latches and flip- flops, PLDs, Counters, shift register.	CO4	 Write VHDL code for JK F/F. Write VHDL code for 4 bit shift register. Design 4 bit up counter and write VHDL code. 	Lecture/ Design/ Programming	Assignment II/Quiz-II/Mid-II
16	ROM - Internal structure, 2D- decoding commercial types, timing and applications.	CO5	 What is ROM? Explain the internal ROM structure with logic diagram of 8x4 diode ROM. Explain the commercial ROM types. 	Lecture/ Discussion	Assignment II/Quiz-II/Mid-II
17	Static RAM - Internal structure, SRAM timing, standard SRAMS, synchronous SRAMS, Dynamic RAM - Internal structure, timing, synchronous DRAMs.	CO5	 Define timing parameters for Read operations in a static RAM with Timing diagram. What is the difference between SRAM and DRAM.? Explain DRAM read – cycle Timing. 	Lecture/ Discussion	Assignment II/Quiz-II/Mid-II
18	Mid-Test 2				
19/20	END EXAM				