SCHEME OF COURSE WORK

Course Details:

Course Title	:DISTRIBUTED GENERATION					
Course Code	:15EE2216	LTPC	:4003			
Program:	: M.Tech.					
Specialization:	: Power Electronics and Drives					
Semester	: II					
Prerequisites	Prerequisites :Electrical Machines, Power Systems					
Courses to which it is a prerequisite : Renewable Energy Sources						

Course Outcomes (COs):

After completion of the course student acquire knowledge in

1	Classify various methods of power generation, goals of distributed generation and differentiate
	between stand-alone photo voltaic powers
2	Describe the operation, performance, operational limitations, Temperature limits, and
	other aspects of Wind Turbine and Fuel cells.
3	Describe sitting requirements, restrictions, and operationallimitations of microturbines.
4	Describe inter connected generation systems.
5	Analyze the size of Solar Photo Voltaic Systems, Wind PowerSystems, Fuel Cells and
	Micro Turbines, Engine – Generators.

Program Outcomes (POs):

A graduate of Power Electronics and Drives will be able to

1	Acquire in depth knowledge in the area of Distributed Generation
_	Analyze the models with respect to any kind of problem on hand and try to solve related to Distributed
	generation
2	
	Develop the capability of problem solving and original thinking to arrive at feasible and optimal
3	solutions considering societal and environmental factors.
	Interpret and demonstrate sufficient knowledge base, to apply the techniques and tools either
4	individually or in groups to solve power system problems.
5	Select state-of-the-art tools for modeling, simulation and analysis of problems related to power systems.
6	Recognize positively any collaborative and multidisciplinary research to achieve common goals.
	Demonstrate knowledge and understanding of power system engineering and management principles
7	and applythe same for efficiently carrying out projects with due consideration to economical and
	financial factors.
	Communicate confidently, make effective presentations and write good reports to engineering
8	community and society.
9	Recognize the need for life-long learning and have the ability to do it independently.
	Understand Social responsibilities and follow ethical practices to contribute to the community for
10	sustainable development.
	Predict and self examine critically the outcomes of actions, reflect on to make corrective measures and
11	move forward positively.

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO-1	S			Μ	М		S				
CO-2	М			Μ	Μ		S				
CO-3				М	М		S				
CO-4	S	М	S	М	М		S				
CO-5				М			S				

Course OutcomeVersusProgram Outcomes:

S - Strongly correlated, M - Moderately correlated, Blank - No correlation

AssessmentMethods:	Assignment / Quiz / Seminar / Case Study /Mid-Test / End Exam
/ 0000000000000000000000000000000000000	

Teaching-Learning and Evaluation

Week	TOPIC / CONTENTS	Course Outcomes	Sample questions	TEACHING- LEARNING STRATEGY	Assessment Method & Schedule
1	Introduction, Distributed Generation Technologies, Solar Photo Voltaic Power, Wind Power, Fuel Cells, Micro Turbines, Engine Generators, Passive Vs Active Generation	CO-1	Explain the different types of distributed generation technologies?	 Lecture Discussion 	Mid-Test 1 (Week 9) Seminar (Week 1)
2	Goals of Distributed Generation, Reducing the Electric Utility Bill, Improving System Reliability, Standby systems, Selling Power, Generating Environmentally Friendly power, Electrical Utility companies and Distributed Generation.	CO-1	Explain the goals of distributed generation technologies?	 Lecture Discussion 	Mid-Test 1 (Week 9) Seminar (Week 2)
3	Introduction, Components, Foundation and Supports, Fixed Arrays, Tracking Arrays, Solar Arrays, Utility Interactive Power Inverter, Operation, Tilting angle of the array	CO-1	What is an array? Explain different types of arrays?	 Lecture Discussion 	Mid-Test 1 (Week 9) Seminar (Week 3)
4	, Stand Alone Photo Voltaic Power, Grid Connected Photo Voltaic Power, Photo Voltaic Module Ratings, Voltage Ratings, Current Rating, Power Rating, Maximum		Mention the ratings of solar power system?	 Lecture Discussion 	Mid-Test 1 (Week 9) Seminar (Week 4)

	Open Circuit Voltage, Ambient	1			
			Explain different modes of operatin of solar PV Systme?		
	Temperature correction Factors,		operatin of solar 1 v bystne.	1	1
	Installation Requirements, Wiring		1		,l
	methods, Alternating Current Solar				
	modules, siting requirements,				
	operational limitations.				
5	Introduction, Components, towers,	CO-2	Write the different components of	 Lecture 	Mid-Test 1
	Guy Wire Supported towers, Self		a wind generation system?	 Discussion 	(Week 9) Seminar
	Supporting Towers, Wind				(Week 5)
	Turbines Fan Blade Electrical				, ,
	Generators, Operation,				
	Performance				
6	Wind Turbine Ratings, Energy	CO-2	What are the operational	□ Lecture	Mid-Test 1
Ū	Output Estimate, Siting	00 2	limitations of wind turbine	 Discussion 	(Week 9)
	Requirements, Wind Farms,		system?		Seminar
	Operational Limitations, Passive				(Week 6)
	Generation Technology,				
	Temperature Limits, Turbulence,				
	•				
	Flicker.				
7	Introduction, Components, Fuel	CO-2	Explain the operation of fuel cell?	 Lecture Discussion 	Quiz (Week 1-7)
	Processor, Fuel Cell, Anode,			 Discussion 	(week 1-7) Seminar
	electrolyte, Cathode, Fuel Cell				(Week 7)
	Stack Power Converter, Operation,				
	Electrolysis, combined heat and				
	Power, Operational Advantages,				
	Ratings,				
8	Installation and Siting	CO-2	Describe the installation and sitting requirements of fuel cell	 Lecture Discussion 	Assignment (Week 7-8)
	Requirements, Clearances,		generating system?	2.00000.011	Seminar
	Operating Temperature, Outdoor				(Week 8)
	locations, Indoor locations,				
	Detection and Alarm System,				
	Ventilation, Sources of Ignition,				
	Proximity to Utilities, Operation				
	and Siting Limitations.				
9	Mid-Test1				
10	Introduction, Components,	CO-3	Explain the different modes of operation of micro turbines?	 Lecture Discussion 	Mid-Test 2 (Week 18)
	Operation, Grid connected				Seminar ´
	operation, stand alone operation,		Describe the different		(Week 10)
	shutdown procedures, paralleling		components of a micro turbine?		
	multiple micro turbines, Common				
11	output bus,	<u> </u>	Describe the limitation of min	a Locture	Mid Test 2
11	Input impedance, Ratings,	CO-3	Describe the limitations of micro turbine generation system?	 Lecture Discussion 	Mid-Test 2 (Week 18)
	Installation and siting requirements,				Seminar
	emissions, site ratings, ambient				(Week 11)
	temperature, elevation, intake or				
	exhaust restrictions, Zoning				
	ordinances, Operational				
	Limitations.				

1		1		1	1
12	Introduction, Components, Engine	CO-4	Explain the different types of	Lecture	Mid-Test 2
	Generator, Induction Generator,		engine generators?	 Discussion 	(Week 18) Seminar
	Synchronous Generator, Ratings,		Describe the siting requirements		(Week 13)
	Voltage Ratings, Power Ratings,		of a Engine generators?		· · · ·
	Current Ratings, Synchronous				
	Generators, Power Factor and				
	Reactive Power, Stand and Prime				
	ratings, Operation, Siting				
	Requirements				
13	Synchronizing to Power Supply	C0-4	Explain different methods of	 Lecture 	Mid-Test 2
	system, Controlled factors,		synchronization?	 Discussion 	(Week 18) Seminar
	Frequency, Voltage Magnitude,				(Week 14)
	Phase Angle, Manual				
	Synchronization, Voltage and				
	Frequency Meters, Synchro Scope,				
	Synchronizing Lights.				
14	Introduction, Operation, Load	CO-4	Explain the NEC requirements	 Lecture 	Mid-Test 2
	Shring, Base Loading, peak		for grid connected operation?	 Discussion 	(Week 18) Seminar
	shaving, Importing Power,		Write the IEEE 1547		(Week 15)
	Exporting Power, Zero Power		requirements?		(
	Transfer, NEC requirements for				
	grid connected operation,				
	Resources with Electric power				
	Systems, Distribution System				
	Configurations, Primary Loop				
	Distribution System, Primary				
	Selective Distribution System,				
	Secondary Selective Distribution				
	System, Network Distribution				
	System, IEEE 1457 requirements,				
	Voltage Regulation, power				
	monitoring, Grounding,				
	Synchronization, Connect to				
	Network Distribution Systems,				
	Back Feeds, Disconnecting Means,				
	Coordinated Equipment Ratings,				
	Abnormal Operating Conditions,				
	Power Quality, islanding				
15	Introduction, Generation	CO-5	Explain different generation	• Lecture	Quiz
	Characteristics, Solar Photo		characteristics?	 Discussion 	(Week 10-16) Seminar
	Voltaic Power, Wind Power, Site				(Week 16)
	Ratings, Design approach, Load				
	Characteristics, Energy				
	Consumption and Demand, Power				
	Factor, Daily and Seasonal Load				
	Profiles, electric Utility Billing				
	Practices, Peak Demand charges,				
	Demand Ratchet, Net metering,				

	the manufacturer, Sizing Fuel Cells and Micro Turbines, Electric Power Production, Combined Head and		
	Power applications, Sizing Engine – Generators, Fuel Type Operating		
	voltage, :Low Voltage Generators, Medium Generators, Power and Current Rating at 0.8 power factor.,		
	Load Shed.		
17	Mid-Test 2		
18/19	END EXAM		