SCHEME OF COURSE WORK

Course Details:

Course Title	:DISTRIBUTED GENERATION							
Course Code	:13EE2115	L	Т	Р	С	:4 0	03	
Program:	: M.Tech.							
Specialization:	: Power Systems Control & Automation							
Semester	:I							
Prerequisites :Electrical Machines, Power Systems								
Courses to which it is a prerequisite : Renewable Energy Sources								

Course Outcomes (COs):

After completion of the course student acquire knowledge in

-	
1	Classify various methods of power generation, goals of distributed generation and differentiate
	between stand-alone photo voltaic powers
2	Describe the operation, performance, operational limitations, Temperature limits, and
	other aspects of Wind Turbine and Fuel cells.
3	Describe sitting requirements, restrictions, and operational limitations of microturbines.
4	Describe inter connected generation systems.
5	Analyze the size of Solar Photo Voltaic Systems, Wind PowerSystems, Fuel Cells and
	Micro Turbines, Engine – Generators.

Program Outcomes (POs):

A graduate of Power System Control & Automation will be able to

1	Acquire in depth knowledge in the area of power system control and automation.
2	Analyze the models with respect to any kind of problem on hand and try to solve related to power
2	system control and automation.
3	Develop the capability of problem solving and original thinking to arrive at feasible and optimal
5	solutions considering societal and environmental factors.
4	Interpret and demonstrate sufficient knowledge base, to apply the techniques and tools either
4	individually or in groups to solve power system problems.
5	Select state-of-the-art tools for modeling, simulation and analysis of problems related to power systems.
6	Recognize positively any collaborative and multidisciplinary research to achieve common goals.
	Demonstrate knowledge and understanding of power system engineering and management principles
7	and apply the same for efficiently carrying out projects with due consideration to economical and
	financial factors.
8	Communicate confidently, make effective presentations and write good reports to engineering
8	community and society.
9	Recognize the need for life-long learning and have the ability to do it independently.
10	Understand Social responsibilities and follow ethical practices to contribute to the community for
10	sustainable development.
	Predict and self examine critically the outcomes of actions, reflect on to make corrective measures and
11	move forward positively.
	1 5

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO-1	S			М	Μ		S				
CO-2	М			М	М		S				
CO-3				М	Μ		S				
CO-4	S	М	S	М	М		S				
CO-5				М			S				

Course OutcomeVersusProgram Outcomes:

S - Strongly correlated, M - Moderately correlated, Blank - No correlation

AssessmentMethods: Assignment / Quiz / Seminar / Case Study / Mid-Test / End Exam

Teaching-Learning and Evaluation

Week	TOPIC / CONTENTS	Course Outcomes	Sample questions	TEACHING- LEARNING STRATEGY	Assessment Method & Schedule
1	Introduction, Distributed Generation Technologies, Solar Photo Voltaic Power, Wind Power, Fuel Cells, Micro Turbines, Engine Generators, Passive Vs Active Generation	CO-1	Explain the different types of distributed generation technologies?	 Lecture Discussion 	Mid-Test 1 (Week 9) Seminar (Week 1)
2	Goals of Distributed Generation, Reducing the Electric Utility Bill, Improving System Reliability, Standby systems, Selling Power, Generating Environmentally Friendly power, Electrical Utility companies and Distributed Generation.	CO-1	Explain the goals of distributed generation technologies?	 Lecture Discussion 	Mid-Test 1 (Week 9) Seminar (Week 2)
3	Introduction, Components, Foundation and Supports, Fixed Arrays, Tracking Arrays, Solar Arrays, Utility Interactive Power Inverter, Operation, Tilting angle of the array	CO-1	What is an array? Explain different types of arrays?	 Lecture Discussion 	Mid-Test 1 (Week 9) Seminar (Week 3)
4	, Stand Alone Photo Voltaic Power, Grid Connected Photo Voltaic Power, Photo Voltaic Module Ratings, Voltage Ratings, Current Rating, Power Rating, Maximum	CO-1	Mention the ratings of solar power system?	 Lecture Discussion 	Mid-Test 1 (Week 9) Seminar (Week 4)

	Open Circuit Voltage, Ambient Temperature correction Factors, Installation Requirements, Wiring methods, Alternating Current Solar modules, siting requirements, operational limitations.		Explain different modes of operatin of solar PV Systme?		
5	Introduction, Components, towers, Guy Wire Supported towers, Self Supporting Towers, Wind Turbines Fan Blade Electrical Generators, Operation, Performance	CO-2	Write the different components of a wind generation system?	 Lecture Discussion 	Mid-Test 1 (Week 9) Seminar (Week 5)
6	Wind Turbine Ratings, Energy Output Estimate, Siting Requirements, Wind Farms, Operational Limitations, Passive Generation Technology, Temperature Limits, Turbulence, Flicker.	CO-2	What are the operational limitations of wind turbine system?	 Lecture Discussion 	Mid-Test 1 (Week 9) Seminar (Week 6)
7	Introduction, Components, Fuel Processor, Fuel Cell, Anode, electrolyte, Cathode, Fuel Cell Stack Power Converter, Operation, Electrolysis, combined heat and Power, Operational Advantages, Ratings,	CO-2	Explain the operation of fuel cell?	 Lecture Discussion 	Quiz (Week 1-7) Seminar (Week 7)
8	Installation and Siting Requirements, Clearances, Operating Temperature, Outdoor locations, Indoor locations, Detection and Alarm System, Ventilation, Sources of Ignition, Proximity to Utilities, Operation and Siting Limitations.	CO-2	Describe the installation and sitting requirements of fuel cell generating system?	 Lecture Discussion 	Assignment (Week 7-8) Seminar (Week 8)
9	Mid-Test1				
10	Introduction, Components, Operation, Grid connected operation, stand alone operation, shutdown procedures, paralleling multiple micro turbines, Common output bus,	CO-3	Explain the different modes of operation of micro turbines? Describe the different components of a micro turbine?	 Lecture Discussion 	Mid-Test 2 (Week 18) Seminar (Week 10)
11	Input impedance, Ratings, Installation and siting requirements, emissions, site ratings, ambient temperature, elevation, intake or exhaust restrictions, Zoning ordinances, Operational Limitations.	CO-3	Describe the limitations of micro turbine generation system?	 Lecture Discussion 	Mid-Test 2 (Week 18) Seminar (Week 11)

	ramming language requirements for process control				
12	Introduction, Components, Engine Generator, Induction Generator, Synchronous Generator, Ratings, Voltage Ratings, Power Ratings, Current Ratings, Synchronous Generators, Power Factor and Reactive Power, Stand and Prime ratings, Operation, Siting Requirements	CO-4	Explain the different types of engine generators? Describe the siting requirements of a Engine generators?	Lecture Discussion	Mid-Test 2 (Week 18) Seminar (Week 13)
13	Synchronizing to Power Supply system, Controlled factors, Frequency, Voltage Magnitude, Phase Angle, Manual Synchronization, Voltage and Frequency Meters, Synchro Scope, Synchronizing Lights.	C0-4	Explain different methods of synchronization?	Lecture Discussion	Mid-Test 2 (Week 18) Seminar (Week 14)
14	Synchronizing Ergins:Introduction, Operation, LoadShring, Base Loading, peakshaving, Importing Power,Exporting Power, Zero PowerTransfer, NEC requirements forgrid connected operation,Resources with Electric powerSystems, Distribution SystemConfigurations, Primary LoopDistribution System, PrimarySelective Distribution System,Secondary Selective DistributionSystem, Network DistributionSystem, IEEE 1457 requirements,Voltage Regulation, powermonitoring, Grounding,Synchronization, Connect toNetwork Distribution Systems,Back Feeds, Disconnecting Means,Coordinated Equipment Ratings,Abnormal Operating Conditions,Power Quality, islanding	CO-4	Explain the NEC requirements for grid connected operation? Write the IEEE 1547 requirements?	 Lecture Discussion 	Mid-Test 2 (Week 18) Seminar (Week 15)
15	Introduction, Generation Characteristics, Solar Photo Voltaic Power, Wind Power, Site Ratings, Design approach, Load Characteristics, Energy Consumption and Demand, Power Factor, Daily and Seasonal Load Profiles, electric Utility Billing Practices, Peak Demand charges, Demand Ratchet, Net metering,	CO-5	Explain different generation characteristics?	 Lecture Discussion 	Quiz (Week 10-16) Seminar (Week 16)

18/19	END EXAM				
17	Mid-Test 2				
	Load Shed.				
	Current Rating at 0.8 power factor.,				
	Medium Generators, Power and				
	voltage, :Low Voltage Generators,				
	– Generators, Fuel Type Operating				
	Power applications, Sizing Engine				
	Production, Combined Head and				
	and Micro Turbines, Electric Power				
	the manufacturer, Sizing Fuel Cells				
	Systems, Capacity Factor, Role of				(Week 17)
	connections, Sizing Wind Power		technologies? .	Discussion	Seminar
16	Series and Parallel solar module	CO-5	Explain sizing of different distribution generation	 Lecture Discussion 	Assignment (Week 16-17)
	Voltaic Systems, Insulation				
	Utility rate, Sizing Solar Photo				
	Power buy back, Interruptible				