SCHEME OF COURSE WORK

Course Details:

Course Title	: DESIGN OF FLUID POWER SYSTEMS						
Course Code	: 13ME2115	L	T	P	C	:4003	
Program:	: M.Tech.						
Specialization:	: CAAD						
Semester	: IInd						
Prerequisites :							
Courses to which it is a prerequisite :							

Course Outcomes (COs):

At the end of the course, the student will be able to

1	summarize the working of hydraulic systems and pumps					
2	explain working of hydraulic valves, cylinders and motors					
3	design the hydraulic and pneumatic circuits for a given application and execute the					
	same in industry					
4	identify the maintenance and trouble shooting of fluid power systems in industry					
5	outline the advanced electrical controls in fluid power systems					

Program Outcomes (POs):

At the end of the program, the students in CAAD will be able to

1	acquire knowledge in latest computer-aided design and analysis tools
2	create 3D models of real-time components using latest CAD software
3	acquire technical skills to formulate and solve engineering and industrial problems
4	carry out analysis for the design of new products
5	have proficiency to solve problems using modern engineering design tools
6	have capability to work in multidisciplinary streams
7	apply project and finance management skills to organise engineering projects
8	prepare technical reports and present them effectively
9	engage in lifelong learning
10	realize professional and ethical responsibilities
11	conduct surveys, analyse data, plan, design and implement new ideas into action

Course Outcome Versus Program Outcomes:

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO-1			M		S						
CO-2			M		S						
CO-3			S		M	M					
CO-4					M	S					
CO-5					M				S		

Assessment Methods:	Assignment / Quiz / Seminar / Case Study / Mid-Test / End Exam

Teaching-Learning and Evaluation

Wee k	TOPIC / CONTENTS	Course Outcomes	Sample questions	TEACHING- LEARNING STRATEGY	Assessme nt Method & Schedule
1	Introduction to hydraulic systems, Design and construction of hydraulic reservoir and sizing, gravity type	CO-1	 Expline working of any type of accumulator Expline working of any type of pump 	Lecture and PPT Animation	Assignme nt - I (Week 2 - 4)
2	spring-loaded and gas loaded type accumulators	CO-1	3. Expline working of any type of valve		
3	gear pumps, vane pumps and piston pumps, sizing of hydraulic pumps, selection of hydraulic pumps ents for convergence	CO-1			
4	Direction control valves, pressure control valves, flow control valves, servo valves.	CO-2			
5	hydraulic cylinder operation and cylinder mountings - hydraulic cylinder design and cushions	CO-2	 Expline the working of double acting cylinder Expline the working of 	Lecture and PPT Animation	Seminar -I (Week 6 - 8)
6	hydraulic motors - gear, vane and piston motors	CO-2	any type of motor 3. Short notes on		
7	hydraulic motor theoretical torque, power and flow rate - hydraulic motor performance - hydrostatic transmissions.	CO-2	hydraulic motor performance - hydrostatic transmissions.		
8	Control of single and double acting cylinders, regenerative and pump unloading circuit	CO-3			
	Mid-Test 1	CO-1, CO- 2			Mid-Test 1 (Week 8)
9	hydraulic cylinder sequence and synchronizing circuits	CO-3	With neat sketch and	Lecture and PPT	Assignme

17 to	Eng Exams	All CUS			
17 to	Mid-Test 2 End Exams	CO-3, CO- 4, CO-5			Mid-Test 2 (Week 16)
16	examples of simple electro- pneumatic circuits with solenoid operated direction control valve for the control of single and double- acting cylinders	CO-5			
15	troubleshooting of hydraulic system - maintenance and troubleshooting of pneumatic systems		and double-acting cylinders 3. Expline the troubleshooting of pneumatic systems 4. Expline the electropneumatic circuits for the control of single and double-acting cylinders		
14	maintenance and troubleshooting of pneumatic systems	CO-4	pneumatic circuits for the control of single		
13	wear of moving parts due to solid particle contamination of the fluid - problems caused by gases in hydraulic fluids	CO-4	Expline the troubleshooting of pneumatic systems Expline the electro-	Lecture and PPT Demonstration Lecture and PPT Demonstration	
12	oxidation and corrosion of hydraulic fluids - maintaining and disposing of fluids	CO-4	parts caused by gases in hydraulic fluids		,
11	Basic requirements for pneumatic system – air compressor – pneumatic cylinders and air motors – pneumatic valves - basic pneumatic circuits	CO-4	Expline the oxidation and corrosion of hydraulic fluids Expline wear of moving	Discussion Lecture and PPT	Seminar - II (Week 14 - 16)
10	and motor, hydraulic motor breaking system	CO-3	type of cylinder sequence circuit 2. With neat sketch and expline the any one type of speed control of hydraulic cylinder With neat sketch and expline the any one type of basic pneumatic circuit	nuiation	(Wee12 - 14)
10	speed control of hydraulic cylinder	CO-3	expline the any one	mulation	nt - II