SCHEME OF COURSE WORK

Course Details:

Course Title	: DYNAMICS OF ELECTRICAL MACHINES					
Course Code	: 13EE2213	LPC	:403			
Program:	: M.Tech.					
Specialization:	: Power Electronics & Drives					
Semester	: II					
Prerequisites	uisites : Electrical Machines					
Courses to which it is a prerequisite :						

Course Outcomes (COs):

At the end of the course, a student will be able to:

CO1	Derive Kron's Primitive machine as an unified electrical machine model
CO2	Derive the mathematical model and control a 3- phase Induction motor
CO3	Analyze asymmetrical 2-phase induction motor
CO4	Derive the mathematical model of a separately excited DC motor and DC Series
	motor
CO5	Analyze a three phase synchronous machine under transient conditions

Program Outcomes (POs):

	The graduate will be a professional workforce in the areas of "Static Power Electronics
PO1	Converters", "Power Electronic Converter fed Electrical Drives" and "Power Quality".
PO2	The graduate will be able to apply soft computing techniques for Power Electronic Systems
F02	and Electric Drives
PO3	The graduate will be trained to understand large scale Power Electronic Converter Systems,
F03	Electric Drives and issues involved through modeling, analysis and simulation
PO4	The graduate will be able to apply present day techniques and tools to solve Power electronic
	and electric drives problems relevant to India and other countries
PO5	The graduate will be able to use state-of-the-art simulation tools such as PLEXIM, SABER,
105	OPAL-RT Lab, DSPACE, MULTISIM, LABVIEW and other Tools
PO6	The graduate will be capable of contributing positively to collaborative and multidisciplinary
100	research to achieve common goals.
	The graduate will demonstrate knowledge and understanding of power system engineering
PO7	and management principles and apply the same for efficiently carrying out projects with due
	consideration to economical and financial factors.
PO8	The graduate will be able to communicate confidently, make effective presentations and write
100	good reports to engineering community and society.
PO9	The graduate will recognize the need for life-long learning and have the ability to do it
	independently.
PO10	The graduate will become aware of social issues and shall contribute to the community for
1010	sustainable development of society.
	The graduate will be able to independently observe and examine critically the outcomes of
PO11	his/her actions and apply corrective measures subsequently and move forward positively
	through a self corrective approach

Course Outcome Versus Program Outcomes:

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO-1	М	М	М	М	М	W	W	W	W
CO-2	М	М	М	М	М	W	W	W	W
CO-3	М	М	S	Μ	S	W	W	W	W
CO-4	М	М	S	М	S	W	W	W	W

S - Strongly correlated, M - Moderately correlated, Blank - No correlation

Assessment Methods:	Assignment / Quiz / Seminar / Case Study / Mid-Test / End Exam
---------------------	--

Teaching-Learning and Evaluation

Week	TOPIC / CONTENTS	Course Outcom es	Sample questions	Teaching- Learning Strategy	Assessment Method & Schedule
1	Basic Two-pole machine	CO-1	Explain the basic two-pole	Lecture	Mid-Test 1
	representation of commutator machines, 3-ph synchronous machine with and without		machine representation using Kron's Primitive machine.	Discussion	(Week 9) Seminar (Week 1)
	damper bars	00.1	T T • T Z • • •.•		
2	3-ph induction machine, Kron's primitive machine- voltage, current and torque equations	CO-1	Using Kron's primitive Machine model, derive the voltage equations for a three Induction machine.	Lecture Discussion	Mid-Test 1 (Week 9) Seminar (Week 2)
3	Real time model of a two phase	CO-1	Explain the concept of	Lecture	Mid-Test 1
	induction machine transformation to obtain constant matrices-thee phase to two phase transformation- power equivalence		power invariance while transforming three phase to two phase.	^{Problem} solving	(Week 9) Seminar (Week 3)
4	Generalized model in arbitrary	CO-1	Explain the generalized	Lecture	
	reference frame- Electromagnetic torque – Derivation of commonly used		model in arbitrary reference frame theory applied to three phase induction	Discussion	Mid-Test 1 (Week 9) Seminar
	induction machine models		machine.		(Week 4)
5	Stator	CO-1	Obtain Synchronously	Lecture	Mid-Test 1
5	reference frame model- Rotor	001	rotating reference frame	Discussion	(Week 9)
	reference frame model- Synchronously rotating frame model- Equations in flux linkages - per unit model		model equations for an induction machine	Problem solving	Seminar (Week 5)
6	Dynamic Simulation- Small signal	CO-1	Explain the principle of	Lecture	Mid-Test 1
	equations of induction machine – derivation DQ flux linkage model derivation – control principle of Induction machine		control of induction machine.	Discussion	(Week 9) Seminar (Week 6)
7	Analysis of symmetrical 2 phase induction machine-voltage and torque Equations. unsymmetrical 2 phase induction machine voltage and torque equations	CO-2	Identify the voltage equations for symmetrical 2 phase induction machine.	Lecture Discussion	Mid-Test 1 (Week 9) Seminar (Week 7) Assignment (Week 6-7)
8	analysis of steady state	CO-2	Identify the voltage	Lecture	Mid-Test 1
	operation of unsymmetrical 2 phase induction machine		equations for unsymmetrical 2 phase induction machine.	Discussion	(Week 9) Seminar (Week 8)
9	Mid-Test 1				
10	single phase induction motor - Cross field theory of single-phase induction machine	CO-2	Explain the concept of Cross field theory of single phase induction machine	Lecture Discussion	Mid-Test 2 (Week 18) Seminar (Week 10)
11	Mathematical model of a sep. excited DC motor- steady state and transient analysis - Transfer function	CO-3	Obtain the transfer function of a separately excited DC motor under steady state	Lecture Discussion	Mid-Test 2 (Week 18) Seminar

	of a sep. excited DC motor		and transient states.		(Week 11)
12	Mathematical model of a DC series motor, shunt motor- linearization techniques for small perturbations	CO-3	Explain the linearization technique used for small perturbations for a separately excited DC	Lecture Discussion	Mid-Test 2 (Week 18) Seminar (Week 12)
13	Synchronous machine inductances – voltage equations in the rotor's DQ0 reference frame- electromagnetic torque-current in terms of linkages	CO-4	motor. Obtain the expression for torque using rotor reference frame for synchronous motor.	Lecture Discussion	Mid-Test 2 (Week 18) Seminar (Week 13)
14	Dynamic performance of synchronous machine,	CO-4	Explain dynamic performance of Synchronous machine	Lecture Discussion	Mid-Test 2 (Week 18) Seminar (Week 14)
15	three-phase fault, comparison of actual and approximate transient torque characteristics	CO-4	Explain three phase fault on a synchronous machine using equal area criteria.	Lecture Discussion	Mid-Test 2 (Week 18) Seminar (Week 15) Assignment (Week 14-15)
16	Equal area criteria- simulation of three phase synchronous machine	CO-4	Explain the concept of Equal area criteria for a sudden change in the input torque.	Lecture Demonstrati On	Mid-Test 2 (Week 18) Seminar (Week 16)
17	modeling of PMSM. Revision	CO-4	Identify the equations governing PMSM for the modeling.	Lecture Demonstrati On	Mid-Test 2 (Week 18) Seminar (Week 17)
18	Mid-Test 2				
19/20	END EXAM				