SCHEME OF COURSE WORK

Course Details:

se Details.										
Course Title	: DIGITAL DESIGN THROUGH VERILOG									
Course Code	: 13EC1132 L T P C :4 0 0 3									
Program:	: B.Tech.									
Specialization:	: Electronics and Communications Engineering									
Semester	: VII									
Prerequisites	STLD									
Courses to which it is a prerequisite :										

Course Outcomes (COs):

1	Describe the basic concepts of Verilog language.
2	Classify gate level modeling, dataflow level modeling and model digital circuits.
3	Distinguish behavioral level modeling, switch level modeling and model combinational, sequential circuits.
4	Differentiate Functions, Tasks, User defined primitives and design of an RTL models for memories and buses.
5	Identify Xilinx 3000 series FPGAs and Altera FLEX 10K series CPLDs.

Course Outcome Versus Program Outcomes:

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO 1	S	S		М	Μ							М
CO 2	S	S		S	S							М
CO 3	S	S		S	S							М
CO 4	S	S		М	S							М
CO 5	S	S		М	S							М

S - Strongly correlated, M - Moderately correlated, Blank - No correlation

Teaching-Learning and Evaluation

Week	TOPIC / CONTENTS	Course Outcomes	Sample questions	TEACHING- LEARNING STRATEGY	Assessment Method & Schedule	
1Introduction to Verilog: Verilog as HDL, Levels of Design Description, Concurrency, Simulation and Synthesis, Functional Verification, System Tasks, Programming Language Interface (PLI), Module, Simulation and Synthesis Tools		CO-1	 Briefly describe the basic modeling styles supported by Verilog HDL . Define and explain the following terms relevant to Verilog HDL. Module 2. Test bench 	 Lecture Discussion Programming 	Assignment I/Quiz-I / Mid 1	
2	Language constructs and conventions: Test Benches. Language Constructs and Conventions: Introduction, Keywords, Identifiers, White Space Characters, Comments, Numbers, Strings, Logic Values, Strengths, Data Types, Scalars and Vectors, Parameters, Memory, Operators.	CO-1	 1.Explain about following Language constructs and conventions in Verilog. 1.Identifiers 2.Numbers 3.Strengths 4.Data types 5.Comments 2.What are the various data types available in Verilog HDL. Explain them with necessary syntax and suitable example. 	 Lecture Discussion Programming 	Assignment I/Quiz-I / Mid 1	
3	GATE LEVEL MODELING: Introduction, AND Gate Primitive, Module Structure, Other Gate Primitives, Illustrative Examples.	CO-2	1. Implement the gate level description of a 2 to 4 decoder circuit with relevant logic diagram and Verilog HDL source code.2. Implement gate level description of a 4 to 1 multiplexer circuit with relevant logic diagram and Verilog HDL source code.	 Lecture Discussion Programming 	Assignment I/Quiz-I / Mid 1	
4	GATE LEVEL MODELING: Tri-State Gates, Array of Instances of Primitives, Additional Examples, Design of Flip-flops with Gate Primitives, programs.	CO-2	 Design a 4 bit ALU which can perform the following functions. Addition of two 4-bit numbers,2. Complementing all the bits of a 4-bit vector, 3. Bit by bit AND operation,4. Bit by bit XOR operation. Write Verilog HDL source code and draw the relevant synthesized circuits. Implement the gate level 	 Lecture Discussion Programming 	Assignment I/Quiz-I / Mid 1	
5	GATE LEVEL MODELING: Delays, Strengths and Contention Resolution, Net Types, Design of Basic Circuits, programs.	CO-2	description of a JK Flip flop.1. Describe the following relevant to gate level modeling with necessary syntax and example.1. Gate delays2. Strengths and contention Resolution	 Lecture Discussion Programming 	Assignment I/Quiz-I / Mid 1	
6	DATA FLOW LEVEL MODELING: Introduction, Continuous Assignment	CO-2	1.Explain the operators in Verilog.	 Lecture Discussion Programming 	Assignment I/Quiz-I /	

	Structures, programs.		2.Write a Verilog HDL source code for 4-bit ALU using assign construct.		Mid 1
7	DATA FLOW LEVEL MODELING: Delays and Continuous Assignments, Assignment to Vectors, Operators, programs.	CO-2	 Describe the continuous assignment feature of Verilog HDL with suitable example. Write a Dataflow level description for a BCD adder 	 Lecture Discussion Programming 	Assignment I/Quiz-I / Mid 1
8	BEHAVIORAL MODELING: Introduction, Operations and Assignments, Functional Bifurcation, <i>Initial</i> Construct, <i>Always</i> Construct, Examples	CO-3	 Implement the behavioral level description of a JK Flip flop circuit using an always statement and draw the synthesized circuit. Implement the behavioral level description of a bi- directional shift register. 	 Lecture Discussion Programming 	Assignment I/Quiz-I / Mid 1
9	Mid-Test 1	CO-1,CO-2, CO3			
10	BEHAVIORAL MODELING: Assignments with Delays, <i>Wait</i> construct, Multiple Always Blocks, Designs at Behavioral Level, Blocking and Non- blocking Assignments, The case statement, Simulation Flow. If and if-else constructs	CO-3	 Write a behavioral level description of 4-bit up/down counter. Write a Verilog HDL source code for clocked RS flip flop and draw the relevant synthesized circuit along with simulation results. 	 Lecture Discussion Programming 	Assignment 2/Quiz-2 / Mid 2
11	BEHAVIORAL MODELING: assign-de assign construct, repeat construct, for loop, the disable construct, whileloop, forever loop, parallel blocks, force-release construct, Event.	CO-3	 Explain different Loop statements with necessary syntax and relevant example. Write about the following statements using (i)If statement (ii)Case statement (iii)Loop statement 	 Lecture Discussion Programming 	Assignment 2/Quiz-2 / Mid 2
12	SWITCH LEVEL MODELING: Introduction, Basic Transistor Switches, CMOS Switch, Bi-directional Gates, Time Delays with Switch Primitives, Instantiations with Strengths and Delays, Strength Contention with Tri reg Nets	CO-3	 What are the various switch level primitives and give their instantiations .Draw the basic CMOS inverter circuit and write its Verilog HDL source code. Write a switch level description for a 2 input NMOS NOR gate with active pull up load. 	 Lecture Discussion Programming 	Assignment 2/Quiz-2 / Mid 2
13	Functions, Tasks and User-Defined Primitives: Introduction, Function, recursive functions, Tasks, User- Defined Primitives (UDP)- combinational UDPs, sequential UDPs, FSM Design.	CO-4	 Principle of the primitives Define User define primitives with syntax. Explain the difference between combinational and sequential UDP s with examples. What is a State machine? Design a Moore machine for a sequence generator to sequence through eight distinct states. 	 Lecture Discussion Programming 	Assignment 2/Quiz-2 / Mid 2

14	System Tasks, Functions, and Compiler Directives: Parameters, Path Delays, Module Parameters, System Tasks and Functions, File-Based Tasks and Functions, Compiler Directives, Hierarchical Access, General Observations. Verilog models for memories and buses: Static RAM Memory, A simplified 486 Bus Model, UART Design.	CO-4	The states are represented by a set of four binary variables— W,X,Y,Z. The states and sequence are as follows(the four bits represent values of W <x<y and Z respectively): $1000 \rightarrow 1100 \rightarrow 0100$ $\rightarrow 0110 \rightarrow 0010 \rightarrow 0011$ $\rightarrow 0001 \rightarrow 1001 \rightarrow 1000 \rightarrow$ 1. Explain about System Tasks in Verilog HDL 2. Write about standard compiler directives used in Verilog HDL 1.Explain read & write cycle timing operations in static – RAM memory . 2.Design and write verilog HDL source code for 486 bus model.</x<y 	 Lecture Discussion Programming Lecture Discussion Programming PPT 	Assignment 2/Quiz-2 / Mid 2 Assignment 2/Quiz-2 / Mid 2
16	Designing with field programmable gate arrays and complex programmable logic devices: Xilinx 3000 Series FPGAs, Designing with FPGAs, Using a One- Hot State Assignment.	CO-5	 Explain architecture of XILINX 3000 series FPGA. Explain one-hot state assignment. 	 Lecture Discussion Programming PPT 	Assignment 2/Quiz-2 / Mid 2
17	Altera Complex Programmable Logic Devices(CPLDs), Altera FLEX 10K Series CPLDs.	CO-5	1.Explain the architecture of Altera FLEX 10K Series CPLD.2.Discuss I/O block of Altera FLEX 10K Series CPLD	 Lecture Discussion Programming PPT 	Assignment 2/Quiz-2 / Mid 2
18	Mid-Test 2	CO-3,CO-4, CO5			
19/20	END EXAM				