SCHEME OF COURSE WORK

Course Title	: Computer Aided Design					
Course Code	: 15ME2101	L	Т	Р	С	: 3 0 0 3
Program:	: M.Tech.					
Specialization:	: CAD/CAM					
Semester	: I					

Course Outcomes (COs):

At the end of the course, the student will be able to

1	Explain CAD system and wireframe modeling techniques
2	Describe different surface modeling techniques and surface manipulations
3	Discuss different solid modeling techniques and solid manipulations
4	Use various design applications of machine components
5	Appraise the collaborative engineering and translate different formats of CAD/CAM data exchange

Program Outcomes (POs)

At the end of the program, the students in CAD/CAM will be able to

- 1. acquire fundamentals in the areas of computer aided design and manufacturing
- 2. apply innovative skills and analyze computer aided design and manufacturing problems critically
- 3. identify, formulate and solve design and manufacturing problems
- 4. carry out research related to design and manufacturing
- 5. use existing and recent CAD/CAM software
- 6. collaborate with educational institutions, industry and R&D organizations in multidisciplinary teams
- 7. apply project and finance management principles in engineering projects
- 8. prepare technical reports and communicate effectively
- 9. engage in independent and life-long learning and pursue professional practice in their specialized areas of CAD/CAM
- 10. exhibit accountability to society while adhering to ethical practices
- 11. act independently and take corrective measures where necessary

Course Outcome versus Program Outcomes:

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO-1	S	S	М	М	М	М						
CO-2	S	S	S	М	S	М	М		М			
CO-3	S	S	S	S	S	Μ	М		М			
CO-4	М	М							М			
CO-5	М		М	М	М	М			М			

S - Strongly correlated, M - Moderately correlated, Blank - No correlation

S - Strongly correlated, M - Moderately correlated, Blank - No correlation

Teaching-Learning and Evaluation

WEEK		COLL		TEACHI	
WEEK	TOPIC / CONTENTS	COU RSE OUT COM ES	SAMPLE QUESTIONS	TEACHI NG- LEARNI NG STRATE GY	ASSESSME NT METHOD & SCHEDUL E
1	CAD system: Product life cycle, scope of CAD/CAM, modeling approaches,	CO1	 What are the different phases of product life cycle? What are the different modeling approaches? 	Lectures , CAD software, PPT,	E
2	coordinate systems, basic features, datum features, modeling strategies, model viewing, layers	CO1	 Differentiate between world coordinate system and working coordinate system. What is the difference between analytic and synthetic curve? 	Seminar	
3	Wireframe modeling: wireframe entities, curve representation, analytic curve, parametric representation of synthetic curves	CO1			
4	Hermite cubic spline, Bezier curve, B-spline curve, curve manipulation	CO1			Assignment (week 7)
5	Surface modeling: Surface entities, surface representation, surface analysis	CO2	 Explain the boundary condition of Bi-cubic surface patch. Draw 5X4 Bezier surface. Differentiate between trimming and 	Lectures , CAD software, PPT,	
6	analytic surface, plane surface, ruled surface, surface of revolution, tabulated cylinder	CO2	segmentation in surface manipulation.	Seminar	
7	Synthetic surfaces, Hermite Bi-cubic surface, Bezier surface, B-Spline surface, Coons surface	CO2			
8	blending surface, offset surface, surface manipulations – displaying, segmentation, trimming, intersection, transformations	CO2			
9	Mid-Test 1	CO-1, CO-2			

10	Solid modeling: Solid entities, geometry and topology, solid representation Boundary representation (B-rep),	CO3 CO3	 Explain the effect of topology and geometry on boundary models. Differentiate between CSG and B-rep. What are the different solid entities? 	Lectures , CAD software, PPT, Seminar	
	Constructive Solid Geometry (CSG), sweep representation, solid manipulations				
12	Design applications: Mechanical tolerances, mass properties on CAD system, assembly modelling	CO4	 How to calculate the mass properties in CAD system? What are the different mating conditions? 	Lectures , CAD software, PPT, Seminar	Seminar
13	assembly tree, assembly planning, mating conditions, bottom-up assembly approach	CO4	Explain. 3. What is bottom-up assembly approach?		(week 11- 16)
14	top-down assembly approach, assembly analysis	CO4			
15	Collaborative engineering: Distributed computing, virtual reality modelling languages, collaborative design, principles	CO5	 Explain different types of translators. Explain the general structure of IGES file. Explain virtual reality modeling languages. What are the different collaborative principles and approaches? 	Lectures , CAD software, PPT, Seminar	
16	approaches, tools, design systems CAD/CAM data exchange: Types of translators, IGES	CO5			
17	STEP, ACIS, DXF, processors	CO5			
18	Mid-Test 2	CO-3, CO-4, CO-5			
19/20	END EXAM	All Cos			