SCHEME OF COURSE WORK

Course Details:

SC D'CtullSt								
Course Title	:Advanced Tool Des	sign						
Course Code	:13ME2105		LI	C P	С	:4	3	
Program:	: M.Tech.							
Specialization:	: CAD/CAM							
Semester	I:							
Prerequisites	:Material science an	d Manufacturing technol	logy					
Courses to whic	h it is a prerequisite	•						

Course Outcomes (COs): At the end of the course, the student will be able to

CO 1	Describe tool design methods and die and punch manufacturing techniques
CO 2	Select material for cutting tools and gages; classify various cutting tools and gages and identify their nomenclature
CO 3	Describe the principles of clamping, drill jigs and computer aided jig design
CO 4	Design fixtures for milling, boring, lathe, grinding, welding; identify fixtures and cutting tools for NC machine tools
CO 5	Explain the principles of dies and moulds design

Program Outcomes (POs)

At the end of the program, the students in CAD/CAM will be able to

- 1. acquire fundamentals in the areas of computer aided design and manufacturing
- 2. apply innovative skills and analyze computer aided design and manufacturing problems critically
- 3. identify, formulate and solve design and manufacturing problems
- 4. carry out research related to design and manufacturing
- 5. use existing and recent CAD/CAM software
- 6. collaborate with educational institutions, industry and R&D organizations in multidisciplinary teams
- 7. apply project and finance management principles in engineering projects
- 8. prepare technical reports and communicate effectively
- 9. engage in independent and life-long learning and pursue professional practice in their specialized areas of CAD/CAM
- 10. exhibit accountability to society while adhering to ethical practices
- 11. act independently and take corrective measures where necessary

Course Outcome Versus Program Outcomes:

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO-1			Μ	Μ							М
CO-2											М
CO-3	S	S	Μ								
CO-4	S	S	Μ								
CO-5			Μ								

S - Strongly correlated, M - Moderately correlated, Blank - No correlation

Assessment							
Methods:							

Assignment / Seminar / Mid-Test / End Exam

Teaching-Learning and Evaluation

Week	TOPIC / CONTENTS	Course Outcom es	Sample questions	TEACHING- LEARNING STRATEGY	Assessme nt Method & Schedule
1	Tool design methods: tentative design solutions, finished design, drafting and design techniques in tooling drawings	CO-1	Explain various drafting and design techniques.	 Lecture Demonstration 	Assignme nt (Week 2 - 4)
2	Punch and die manufacturing techniques	CO-1	Discuss considerations in punch and die design	Lecture / Discussion	Mid-Test 1 (Week 9)
3	Tooling materials: Introduction, properties of tool materials, metal cutting tools, single point cutting tools,	CO-2	What is ment by tool steel? What are the characteristics of oxide cutting tools?	 Lecture Problem solving 	Seminar – 1 (Week 2 - 6)
4	Milling cutters, drills and drilling, reamer classification, taps, tap classification, the selection of carbide cutting tools, various heat treatments	CO-2	Why is chip formation in miling more complicated than in single point turning?	Lecture / Discussion	
5	Gages and gage design: Fixed gages, gage tolerances, the selection of material for gages.	CO-2	Design a form gauge to check the angle of the workpiece shown in figure.	Lecture / Discussion Demonstration	
6	Design of jigs: Principles of clamping, drill jigs, chip formation in drilling,	CO-3	What are the common methods of locating from circular surface?	Lecture / Discussion Demonstration Problem solving	
7	General considerations in the design of drill jigs, drill jigs and modern manufacturing	CO-3	What are the general considerations in the design of drill jigs?	Lecture Demonstration Problem solving	
8	computer aided jig design	CO-3	Explain computer aided jig design.	 Lecture Demonstration 	
9	Mid-Test 1				
10	Design of fixtures: Types of fixtures, vice fixtures, milling fixtures, boring fixtures,	CO-4	Design a milling fixture to machine the link connecting rod shown in figure.	 Lecture/Discus sin Demonstration 	Mid-Test 2 (Week 18)
11	Broaching fixtures, lathe fixtures, grinding fixtures	CO-4	Design a grinding fixture to surface grind the workpiece shown in figure.	Lecture / Discussion Problem solving	Case Study (Week 10 - 14)

12	Computer aided fixture design, welding fixtures, fixture design for NC machine tools	CO-4	Design a universal N/C fixture to hold the workpiece shown in figure.	Lecture / Discussion Demonstration	Seminar – 2 (Week 12 - 16)
13	Cutting tools for numerical control, tool holding methods for numerical control.	CO-4	How are lathe chicks used as holding fixtures in N/C machine tools?	Lecture / Discussion	
14	Design of dies and moulds: Die- design fundamentals, blanking and piercing die construction	CO-5	Determince the proper die clearance for theb workpeice shown in Figure.	Lecture / Discussion Problem solving Demonstration	
15	Pilots, strippers and pressure pads, presswork materials, bending dies, forming dies, drawing operations	CO-5	What are the various types of neding dies?	Lecture / Discussion Demonstration	
16	Mould design: Splits in mould, split locking, two-cavity and multi-cavity moulds	CO-5	What are the various types of moulds and write general considerations in mould design	Lecture / Discussion Demonstration	
17	Design details of injection moulds	CO-5	Comment on design considerations in design of injection moulds.	Lecture / Discussion	
18	Mid-Test 2				
19/20	END EXAM				