SCHEME OF COURSE WORK

Course Details:

Course Title	: ANALYSIS OF SPECIAL MACHINES						
Course Code	:13EE2212						
Program:	: M. Tech.						
Specialization:	: POWER ELECTRONICS AND DRIVES						
Semester	: II SEM						
Prerequisites	: MATHEMATICS, ELECTRIC NETWORKS AND ELECTRICAL MACHINES						
Courses to which it is a prerequisite :							

Course Outcomes (COs): At the end of the course students will be able to evaluate the performance of

1	Stepper Motor.
2	Switched Reluctance Motor and Servo Motor.
3	Permanents Magnet Brushless DC Motor.
4	Permanents Magnet Synchronous Motors.
5	Linear Motors and AC Tachometers.

Program Outcomes (POs):

1	Develop in depth knowledge in the areas of "Static Power Electronics Converters", "Power Electronic							
	Converter fed Electrical Drives" and "Power Quality".							
2	Apply soft computing techniques for Power Electronic Systems and Electric Drives							
-								
3	Understand large scale Power Electronic Converter Systems, Electric Drives and issues involved through							
	Modeling, Analysis and Simulation.							
4	Apply present day techniques and tools to solve Power electronic and electric drives problems relevant to							
	India and other countries.							
5	Use state-of-the-art simulation tools such as PLEXIM, SABER, OPAL-RT Lab, DSPACE, MULTISIM,							
	LABVIEW and other Tools.							
6	Contribute positively to collaborative and multidisciplinary research to achieve common goals.							
7	Demonstrate knowledge and understanding of power engineering and management principles and apply							
	the same for efficiently carrying out projects with due consideration to economical and financial factors.							
8	Communicate confidently, make effective presentations and write good reports to engineering community							
0								
	and society.							
9	Recognize the need for life-long learning and have the ability to do it independently.							
10	Acquire knowledge on social issues and shall contribute to the community for sustainable development.							
11	Predict and examine critically the outcomes of actions, apply corrective measures subsequently and move							
11	riculated and examine chickens the butcomes of actions, apply corrective measures subsequently and move i							
11	forward positively through a self corrective approach.							

Course Outcome versus **Program Outcomes:**

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO-1	S	S	S	S	-	M	M	M	M
CO-2	S	S	S	S	-	S	M	M	M
CO-3	S	S	S	S	-	M	M	M	M
CO-4	S	S	S	S	-	M	M	M	M
CO-5	S	S	S	S	-	S	M	M	M

S - Strongly correlated, M - Moderately correlated, w- weakly correlated, Blank - No correlation

Assessment Methods:	Assignment / Quiz / Seminar / Case Study / Mid-Test / End Exam
---------------------	--

Teaching-Learning and Evaluation

Week	TOPIC / CONTENTS	Course Outco mes	Sample questions	TEACHING- LEARNING STRATEGY	Assessment Method & Schedule
1	Constructional features, Principle of operation, Modes of excitation torque production in Variable Reluctance (VR) stepping motor.	CO1	Explain Construction features and principle of operation of stepper Motor Derive the Torque expression for Variable Reluctance Motor.	LectureDiscussion	Mid-Test 1 (Week 8) Seminar (Week 1)
2	Dynamic characteristics, Drive systems and circuit for open loop control, closed loop control of stepping motor.	CO1	Draw and explain the Characteristics of Stepper Motor Explain different types Control Strategies of Stepper Motor	LectureDiscussionProblem solving	Mid-Test 1 (Week 8) Seminar (Week 2)
3	Switched Reluctance Motor (SRM) Constructional features, Principle of operation. Torque equation.	CO2	Explain the Construction details and principle of operation of SRM Derive the Torque Expression for SRM	LectureDiscussionProblem solving	Mid-Test 1 (Week 8) Seminar (Week 3)
4	Characteristics OF Switched Reluctance Motor (SRM), Control Techniques for Switched Reluctance Motor (SRM), and Drive Concept for Switched Reluctance Motor(SRM)	CO2	Draw and explain Characteristics of SRM Explain different types of Control Strategies of SRM	LectureDiscussion	Mid-Test 1 (Week 8) Seminar (Week 4)
5	Servomotor Types, Constructional features of servo Motor – Principle of Operation of Servo motor.	CO2	Explain Construction features and principle of operation of servo Motor Explain different Types of Servo Motor	LectureDiscussion	Mid-Test 1 (Week 8) Seminar (Week 5)
6	Characteristics of servo motor, Control strategies of servo motor, Microprocessor based applications of servo motor.	CO2	Draw and explain Characteristics of Servo Motor Explain the different Control Strategies of Servo Motor	LectureDiscussion	Mid-Test 1 (Week 8) Seminar (Week 6)
7	Commutation in DC motors, Difference between mechanical and electronic commutators, Hall sensors, Optical sensors, Multiphase Brushless motor.	CO3	Write the Difference between Mechanical and Electric commutators. Explain the Importance of Optical sensor, Hall sensor	LectureDerivation	Mid-Test 1 (Week 8) Seminar (Week-7)
8	Mid-Test 1				
9	Types of Permanent Magnet motors, Square wave Permanent Magnet Brushless Motor (PM BLDC) drives, Torque and emf equation.	CO3	Explain how will be Torque produced in PM BLDC Motor Drive the Expression for EMF equation of PM BLDC Motor	LectureDiscussionProblem solving	Mid-Test (Week 19) Seminar (Week-9)
10	Torque-speed characteristics of PM BLDC Motor, Different types of Controllers, Microprocessors based controller.	CO3	Draw and Explain Torque-speed characteristics of PM BLDCM Explain Different Types of controllers for PM BLDC	LectureDerivation	Mid-Test (Week 19) Seminar (Week-10)
11	Permanent magnet Synchronous Motors (PMSM) Principle of operation, power input	CO4	Explain the Principle of operation of PMSM	LectureDiscussion	Mid-Test (Week 19) Seminar (Week-11)
12	EMF and torque expressions, Phasor diagram	CO4	Derive the EMF and Torque Equations of PMSM Draw and explain the Phasor diagrams of PMSM	LectureDiscussionProblem solving	Mid-Test (Week 19) Seminar (Week-12)

					1
	Power Controllers, Torque speed characteristics, Self control, Vector	aa.	Draw Torque and speed characteristics of PMSM	_	Mid-Test (Week 19)
13	control, Current control Schemes for Permanent magnet Synchronous Motors	CO4	Explain Different types of Control strategies of PMSM	LectureDiscussion	Seminar (Week-13)
	(PMSM)		Explain Self ,vector, Current control	- Discussion	(WCCK-13)
			schemes of PMSM		
	Linear Induction Motor (LIM)		Explain the principle of operation of	.	Mid-Test
14	Classification, Construction, Principle of	CO5	LIM.	LectureDiscussion	(Week 19) Seminar
14	operation, Concept of Current sheet, Goodness factor	COS	Explain the concept of Current sheet and Goodness factor.	- Discussion	(Week-14)
	Goodiless factor		Explain different types of DC Linear		Mid-Test
	DC Linear Motor (DCLM) types - Circuit		Motors.	 Lecture 	(Week 19)
15	equation – DCLM control-applications.	CO5	Explain the control strategies of dc	 Discussion 	Seminar
			Linear Motor.		(Week-15)
					Mid-Test
	Schematic diagram, AC Tachometer		With neat Sketch Explain the principle	 Lecture 	(Week 19)
16	Operating principle, numerical problems.	CO5	of operation of AC tachometer	 Discussion 	Seminar
17, 18	Revision				(Week-16)
19	Mid-Test 2				
20	END EXAM				Assessment
_~					will be on
					all topics at
					END
					EXAM