Model Template for Scheme of Course Work

to be submitted by the Faculty of B.Tech/M.Tech/MCA I semester on or before 11.10.2013 to bhanucvk@gvpce.ac.in and yadavalliraghu@yahoo.com

SCHEME OF COURSE WORK

Course Details:

e Detiminor								
Course Title	: ANALYSIS OF POWER ELCTRONIC CONVERTER-I							
Course Code	: 13EE2001		L T P C	:4 0 0 3				
Program:	: M.Tech.							
Specialization:	: Power Electronics a	: Power Electronics and Drives						
Semester	:I Sem							
Prerequisites	: POWER ELECTR	ONICS AND BASIC NETW	ORK ANALYSI	S				
Courses to which	h it is a prerequisite	: ANALYSIS OF POWER ELCTRONIC CONVERTER-I,						
		SOLID STATE CONTRO	OL OF AC AND	DC DRIVES				

Course Outcomes (COs): At the end of the course students will be able to understand

1	Different power semiconductor devices
2	Full and half controlled converters
3	AC voltage controllers and Cycloconverters
4	dc-dc switch mode converters
5	dc-ac switch mode inverters
6	Multilevel inverters

Program Outcomes (POs):

1	Be a part of competent workforce in the area of Static Power Electronics Converters and power electronic converter fed electrical drives and power quality issues .
2	Apply soft computing techniques for Power Electronic Systems and Electric Drives.
3	Understand large scale Power Electronic Converter Systems, Electric Drives and issues involved through modeling, analysis and simulation.
4	Apply present day techniques and tools to solve Power electronic and electric drives problems relevant to india and other countries
5	To gain necessary skills in using state-of-the-art simulation tools such as PLEXIM, SABER, OPAL-RT Lab, dSPACE, MULTISIM, LABVIEW and other Tools for analysis, design and trouble shooting of power electronics converters and various Electric drives.
6	Collaborate with industries on problems of relevance to them while planning/organizing graduate dissertations towards expanding sphere of interaction
7	Improve soft skills of students through seminars and organization of technology workshops, writing research/project reports as a part of graduate education.
8	Encourage life-long learning through professional bodies (such as IEEE. Institute of Engineers (India) ,etc)
9	Imbibe social responsibilities and ethical practices towards creating a work force for national growth

Model Template for Scheme of Course Work

to be submitted by the Faculty of B.Tech/M.Tech/MCA I semester on or before 11.10.2013 to bhanucvk@gvpce.ac.in and yadavalliraghu@yahoo.com

Course Outcome Versus Program Outcomes:

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO-1			M	S					
CO-2			S	M					
CO-3				M			S		
CO-4			M	S					
CO-5			M	M		S			
CO-6		M			S				

S - Strongly correlated, *M* - *Moderately* correlated, *Blank* - *No correlation*

Assessment Methods:	Assignment / Quiz / Seminar / Case Study / Mid-Test / End Exam

Teaching-Learning and Evaluation

Week	TOPIC / CONTENTS	Course Outcomes	Sample questions	TEACHING- LEARNING STRATEGY	Assessment Method & Schedule
1	Power Diodes, Power BJTs, Power MOSFETs, Thyristors, Gate Turn Off Thyristors, IGBTs,	CO-1	Static V-I Characteristics of devices	□ Lecture	Assignment (Week 2 - 4)
2	MOS-Controlled Thyristors, Comparison of Controllable Switches, Drive and Snubber Circuits, Justification for Using Idealized Device Characteristics	CO-2	P and N channel enhancement type MOSFET. Also explain its output characteristics	□ Lecture	Mid-Test 1 (Week 9)
3	Introduction, Principle of phase controlled converter operation, single phase full converters, single phase dual converters	CO-3	Explain the principle of operation of a single phase fully controlled converter	□ Lecture □ Problem solving	
4	Three phase half wave converters, three phase full converters, Three phase dual converters,	CO-2	Explain the principle of operation of a three phase fully controlled converter	Lecture Problem solving	
5	Power factor improvements, Single phase semiconverters, Three phase semiconverters.		Explain Power factor improvements	Lecture Problem solving	
6	Introduction, Principle of ON-OFF Control,, Single phase bidirectional controllers with resistive loads	CO-3	Describe principle of operation of single phase AC-AC converters. Derive output voltage	 Lecture Problem solving 	
7	Single phase controllers with inductive loads, Three Phase full wave controllers, Single phase transformer connection changers	CO-3	Describe principle of operation of three phase AC-AC converters. Derive output voltage	Lecture Problem solving	
8	Single phase cycloconverters, Three phase cycloconverters.	CO-3	Describe principle of operation of three phase AC-AC Cycloconverters.	□ Lecture	
9	Introduction, Control of dc-dc converters, Step down (Buck) converter-continuous	CO-4	Describe principle of operation of Step down dc-dc	□ Lecture	

Model Template for Scheme of Course Work

to be submitted by the Faculty of B.Tech/M.Tech/MCA I semester on or before 11.10.2013 to bhanucvk@gvpce.ac.in and yadavalliraghu@yahoo.com

	conduction mode-boundary between continuous and discontinuous conduction-discontinuous conduction mode.		converters. Derive output quantities		
10	Step up (Boost) converter- continuous conduction mode-boundary between continuous and discontinuous conduction-discontinuous conduction mode.	CO-4	Describe principle of operation of Boost dc-dc converters. Derive output quantities	LectureProblem solving	Mid-Test 2 (Week 18)
11	Buck-Boost converter- continuous conduction mode-boundary between continuous and discontinuous conduction-discontinuous conduction mode-output voltage ripple	CO-4	Describe principle of operation of Buck-Boost dc-dc converters. Derive output quantities	 Lecture Problem solving 	Assignment (Week 11-13)
12	Introduction, Basic concepts of switch mode inverters, pulse width modulated switching scheme, single phase inverters- half bridge inverters	CO-5	Explain pulse width modulated switching scheme, single phase inverters-half bridge inverters	Lecture Problem solving	
13	full bridge inverters-PWM with bipolar voltage switching-PWM with unipolar voltage switching, Push-pull inverters,	CO-5	Explain full bridge inverters PWM with bipolar voltage switching-PWM with unipolar voltage switching	 Lecture Problem solving 	
14	Three phase inverters-PWM in three phase voltage source inverters-square wave operation in three phase inverters	CO-5	Explain Three phase inverters- PWM in three phase voltage source inverters-square wave operation in three phase inverters	 Lecture Problem solving 	
15	Ripple in the Inverter output, effect of blanking time on voltage in PWM inverters	CO-6	What are effect of blanking time on voltage in PWM inverters	□ Lecture	
16	Introduction, Multilevel Concept, Types of Multilevel Inverters- Diode-Clamped Multilevel Inverter, Principle of Operation	CO-6	Describe the principle of operation of diode clamped MLI	Lecture	
17	Features of Diode-Clamped Inverter, Improved Diode-Clamped Inverter, Feature of Multilevel Converters, Comparisons of Multilevel Converters	CO-6	Describe the principle of operation of diode clamped MLI	□ Lecture	
18	Mid-Test 2				
19/20	END EXAM				