SCHEME OF COURSE WORK

Course Details:

Course Title	: Advanced Mechanics of Materials								
Course Code	: 13ME2203 L P C : 4 0 3								
Program:	: M.Tech.								
Specialization:	: CAAD								
Semester	: First								
Prerequisites	: Mechanics of solids								
Courses to whic	Courses to which it is a prerequisite : Mechanics of solids								

Course Outcomes (COs):

Tł	The student will be able to						
1.	Relate loading and deformation states to the proper components of stress and strain, determine the principal stresses and principal strains						
2.	Analyze and design the columns						
3.	Determine the stresses due to unsymmetrical bending and locate the shear centre of thin -walled sections						
4.	Determine the stresses in curved beams and apply Castigliano's theorems for deflection of statically determinate and indeterminate structures						

5. Calculate the residual stresses in members under torsion/bending and analyze the torsion of noncircular cross-sections

Program Outcomes (POs):

At the end of the program, the students in CAAD will be able to

PO 1	acquire knowledge in latest computer-aided design and analysis tools
PO 2	create 3D models of real-time components using latest CAD software
PO 3	acquire technical skills to formulate and solve engineering and industrial problems
PO 4	carry out analysis for the design of new products
PO 5	have proficiency to solve problems using modern engineering design tools
PO 6	have capability to work in multidisciplinary streams
PO 7	apply project and finance management skills to organise engineering projects
PO 8	prepare technical reports and present them effectively
PO 9	engage in lifelong learning
PO 10	realize professional and ethical responsibilities
PO 11	conduct surveys, analyse data, plan, design and implement new ideas into action

Course Outcome versus Program Outcomes:

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO-1			S		S			М	Μ		М
CO-2	М		S	М	S	М		М	М		М
CO-3			S		S	М		М			М
CO-4			S	М	S	S		S			М
CO-5	М	М	S	М	S	S		S	S		М

S - Strongly correlated, M - Moderately correlated, Blank - No correlation

Assessment Methods:

Assignment / Quiz / Seminar / Case Study / Mid-Test / End Exam

Week	TOPIC / CONTENTS	Course Outcom es	Sample questions	TEACHING- LEARNING STRATEGY	Assessment Method & Schedule
1	Three dimensional state of stress at a point, stress components on an inclined plane ,principal stresses, stress invariants and Octahedral stress	CO1	Explain the three dimensional state of stress at a point	 Lecture Demo class Problem solving 	
2	Rectangular strain components, state of strain at a point ,principal strains, stress-strain relations for isotropic materials	CO1	Determine the principal strains for a given state of strain at apoint	 Lecture Discussion Problem solving 	
3	Euler's buckling load of a column for different support conditions, Effective length of a column, Rankine's formula	CO2	Derive the relation for the Euler's buckling load for the condition of both ends fixed	 Lecture Discussion Problem solving 	
4	Column subjected to eccentric loading-Secant formula, critical load of a column having initial curvature, stresses	CO2	Explain the column subjected to eccenctric loading	LectureDiscussion	
5	Beam column with a concentrated load at mid-span	CO2	Derive the relation for beam column with a concentrated load at mid span	 Lecture Discussion Problem solving 	Assignment - 1 (Week 5 - 7)
6	Unsymmetrical bending of straight beams having rectangular sections	CO3	Explain briefly about unsymmetrical bending of straight beams	 Lecture Discussion Problem solving 	
7	Unsymmetrical bending of I and T-sections.	CO3	Explain about the unsymmetrical bending of I and T-sections	 Lecture Discussion Problem solving 	
8	Stresses induced and the neutral axis	CO3	Explain about the stress induced and the neutral axis	 Lecture Discussion Problem solving 	Seminar - 1 (Week 8)
9	Mid-Test 1				Mid-Test 1 (Week 9)
10	Shear Centre of simple thin –walled sections.	CO3	Determine the shear centre of simple thin –walled sections	 Lecture Discussion Problem 	

Teaching-Learning and Evaluation

				solving	
11	Shear stresses in thin-walled open sections	CO3	Explain the shear stresses in thin- walled open sections	 Lecture Discussion Problem solving 	
12	Bending of curved beams: Winkler-Bach formula, shift of neutral axis for various cross-sections	CO4	Derive the Winkler-Bach formula for the stresses in curved beams	 Lecture Discussion Problem solving 	
13	Stresses in curved beams, stresses in cranehook, stresses in circular rings	CO4	Explain about the stresses in curved beams	 Lecture Discussion Problem solving 	
14	Energy Methods :Castigliano's first and second theorems, application to members subjected to axial, transverse and torsional loads ,application to statically indeterminate structures	CO4	Explain the Castigliano's first and second theorems	 Lecture Discussion 	Assignment- 2 (Week 14- 16)
15	Plastic deformation: Elasto-plastic material, plastic deformation of circular shafts under torsion	CO5	Explain about plastic deformation of circular shafts under torsion	LectureDiscussion	
16	Residual stresses in circular shafts ,plastic deformation of members with a single plane of symmetry under bending, residual stresses in beams	CO5	Determine the residual stresses in circular shafts	 Lecture Discussion 	
17	Torsion on non circular members: Rectangular, elliptical and equilateral triangular cross-sections, torsion of thin walled tubes	CO5	Explain the torsion of thin-walled tubes	 Lecture Discussion 	Seminar - 2 (Week 17)
18	Mid-Test 2				Mid-Test 2 (Week 18)
19/20	END EXAM				END EXAM