SCHEME OF COURSE WORK

Faculty: Dr. M.V.S. Sai Ram, Professor, ECE

Course Details:

Course Title : ADVANCED DIGITAL SIGNAL PROCESSING

Course Code : 13EC2102 L T P C : 4 0 0 3

Program : M.Tech

(EMBEDDED SYSTEMS & VLSI DESIGN)

Specialization: Electronics and Communication Engineering

Semester : I SEM

Prerequisites : DSP

Courses to : EMBEDDED SYSTEMS

which it is a prerequisite

Course Outcomes (COs):

 CO_1 Comprehend the DFTs and FFTs.

CO₂ Design and Analyze the digital filters.

CO₃ Acquire the basics of multi rate digital signal processing.

CO₄ Analyze the power spectrum estimation (4 or 5 methods).

CO 5 Comprehend the Finite word length effects in Fixed point DSP Systems.

Course Outcome Vs Program Outcomes:

COs	PO ₁	PO_2	PO ₃	PO ₄	PO ₅	PO_6	PO ₇	PO ₈	PO ₉	PO ₁₀	PO ₁₁
CO_1	S	\mathbf{S}	\mathbf{S}	S	\mathbf{S}	M	S	S	S	M	M
CO ₂	S	\mathbf{S}	M	S	M	\mathbf{M}	\mathbf{S}		S	M	M
CO ₃	M	\mathbf{S}	M	S	M	M			S	M	M
CO ₄	M	M	M	M	M	M			S	M	M
CO 5	M	M	M	Sm	M	M			$\overline{\mathbf{S}}$	\mathbf{M}	M

S - Strongly correlated, M - Moderately correlated, Blank - No correlation

Assessment Methods: Assignment / Seminar / Case Study / Mid-Test / End Exam

Teaching-Learning and Evaluation

Week	Topic / Contents	Course Outcomes	Sample questions	Teaching- Learning Strategy	Assessment Method & Schedule			
UNIT-I: DISCRETE AND FAST FOURIER TRANSFORMS								
1	Properties of DFT, Linear Filtering methods based on the DFT, Overlapsave, Overlap -Add methods	CO ₁	 How many computations are required to compute the DFT directly? Explain how these computations can be reduced by using radix-2 FFT algorithm? Determine the N-point DFT of the given finite duration sequence of length for N ≥ L x(n) = { 1, 0 ≤ n ≤ L - 1	□ Lecture □ Demo	Mid- 1/Assignment -1			
2	Frequency analysis of signals, Radix-2 FFT and Split-Radix FFT algorithms	CO ₁	1. Explain the radix 2 decimation in time FFT algorithm and draw the diagram indicating the signal flow	Lecture Problem solving	Mid- 1/Assignment -1			
3	The Goertzel and Chirp Z transform algorithms	CO_1	1. Explain Goertzel transform algorithm	□ Lecture	Mid- 1/Assignment -1			
UNIT-	II: DESIGN OF IIR AND F	IR FILTERS						
4	Design of IIR filters using Butterworth & Chebyshev approximations, frequency transformation techniques	CO ₂	1. Determine the order and the poles of a type-I lowpass Chebyshev filter that has a 1-dB ripple in the passband, a cutoff frequency $\Omega_p = 1000\pi$, a stopband frequency of 2000π , and an attenuation of 40dB or more for $\Omega \geq \Omega_s$.	ⁿ Lecture	Mid- 1/Assignment -1			
5	Structures for IIR systems – cascade, parallel, lattice & lattice-ladder structures, Fourier series method, Windowing techniques, design of digital filters based on least – squares	CO_2	1. What are various types windows used in the design FIR filters? Plot their spec and compare.		Mid-1/Seminar - 1			

	method, pade approximations				
6	Least squares design, wiener filter methods, structures for FIR systems –cascade, parallel, lattice & latticeladder structures.	CO_2	1. Convert the analog filter with the given system function into a digital IIR filter by means of the bilinear transformation. The digital filter is to have a resonant frequency of $\omega_r = \pi/2$. $H_a(s) = \frac{s+0.1}{(s+0.1)^2 + 16}$	⁻ Lecture	Mid-1/Seminar - 1
7	MID-I	DDACECC	CO ₁ and CO ₂		MID TEST-I
UNIT	III MULTI RATE SIGNAL Decimation by a factor D,	CO ₃	ING 1. What are multirate system	- I ecture	Mid-
0	Interpolation by a factor I	CO ₃	List out the applications who multirate systems are used		2/Assignment -2
9	Sampling rate conversion by a rational factor I/D, Filter design & Implementation for sampling rate conversion	CO ₃	1. Consider the sign $x(n) = a^n u(n)$, $ a < 1$ Determine the spectrum $X(a)$. The signal $x(n)$ is applied to decimator that reduces the reby a factor of 2. Determine to output spectrum.	- Lecture - Discussion	Mid- 2/Assignment -2
10	Filter banks, sub band coding, polyphase filters.	CO ₃	1. What are polypha structures? Explain th importance in multirasystems? What are applications?	□ Lecture □ Discussion	Mid- 2/Assignment -2
	IV POWER SPECTRAL ES				
11	Estimation of spectra from finite duration observation of signals, Nonparametric methods: Bartlett, Welch & Blackman & Tukey methods	$\mathrm{CO_4}$	1) What is finite word length effect? Why it occurs? Explain how it affects the performance of fixed point DSP processors	□ Lecture □ Discussion	Mid- 2/Assignment -2
12	Relation between auto correlation & model parameters, Yule-	CO_4	1. What is the relationship between autocorrelation and model parameters?	□ Lecture □ Discussion	Mid- 2/Assignment -2

12	Walker & Burg Methods	60	Explain Burg method for estimating power spectrum		Ne.1	
13	MA & ARMA models for	CO_4	1. What are AR, MA and	LectureDiscussion	Mid-	
	power spectrum		ARMA models? What is	Discussion	2/Assignment -2	
TINIT	estimation.	WODDIE	their significance? Clearly NGTH EFFECTS IN FIXE	DDAINT DCD (CVCTEMC	
14	Fixed, Floating Point	CO_5	1. Write a short notes on:	- Lecture	Mid-	
	Arithmetic		i. Fixed and Floating	Discussion	2/Assignment -2	
			point Arithmetic			
			ii. Quantizatio			
			n Noise			
15	ADC quantization noise &	CO ₅	1. Explain the source of	 Lecture 	Mid-	
	signal quality – Finite		occurrence for quantization	 Discussion 	2/Assignment -2	
	word length effect in IIR		noise in ADC. How can it			
	digital Filters		be minimized?			
	digital Pitters		oc minimized:			
		~~			2.51.1	
16	Finite wordlength effects	CO_5	1. Write a short note on	Presentatio	Mid-	
	in FFT algorithms.		finite word length effects	n	2/Assignment -2	
			in FFT algorithms.	 Discussion 		
17	MID-II		CO ₃ , CO ₄ and CO ₅		MID TEST-II	
		- CO3, CO4 and CO3				
18/19	END EXAM					