SCHEME OF COURSE WORK

Faculty : Dr. M.V.S. Sai Ram, Professor, ECE

Course Details:

Course Title	:	ADVANCED DIGITAL SIGNAL PROCESSING
Course Code	:	13EC2102 L T P C : 4 0 0 3
Program	:	M.Tech (COMMUNICATION ENGINEERING AND SIGNAL PROCESSING)
Specialization	:	Electronics and Communication Engineering
Semester	:	I SEM
Prerequisites	:	DSP
Courses to which it is a prerequisite	:	EMBEDDED SYSTEMS

Course Outcomes (COs):

CO_1	Comprehend the DFTs and FFTs.
CO ₂	Design and Analyze the digital filters.
CO ₃	Acquire the basics of multi rate digital signal processing.
CO ₄	Analyze the power spectrum estimation (4 or 5 methods).
CO 5	Comprehend the Finite word length effects in Fixed point DSP Systems.

Course Outcome Vs **Program Outcomes:**

COs	PO ₁	PO ₂	PO ₃	PO ₄	PO ₅	PO ₆	PO ₇	PO ₈	PO ₉	PO ₁₀	PO ₁₁
CO_1	S	S	S	S	S	Μ	S	S	S	Μ	S
CO ₂	S	S	Μ	S	Μ	Μ	S		S	Μ	S
CO ₃	Μ	S	Μ	S	Μ	Μ			S	Μ	S
CO ₄	Μ	\mathbf{M}	Μ	S	Μ	Μ			S	\mathbf{M}	S
CO 5	Μ	Μ	Μ	S	Μ	Μ			S	Μ	S

S - Strongly correlated, M - Moderately correlated, Blank - No correlation

Assessment Methods: Assignment / Seminar / Case Study / Mid-Test / End Exam

Teaching-Learning and Evaluation

Week	Topic / Contents	Course Outcomes	Sample questions	Teaching- Learning Strategy	Assessment Method & Schedule				
UNIT-I: DISCRETE AND FAST FOURIER TRANSFORMS									
1	Properties of DFT, Linear Filtering methods based on the DFT, Overlapsave, Overlap -Add methods	CO1	1. How many computations are required to compute the DFT directly? Explain how these computations can be reduced by using radix-2 FFT algorithm? 2. Determine the N-point DFT of the given finite duration sequence of length for N ≥ L $x(n) = \begin{cases} 1, & 0 \le n \le L-1 \\ 0, & otherwise \end{cases}$	 Lecture Demo 	Mid- 1/Assignment -1				
2	Frequency analysis of signals, Radix-2 FFT and Split-Radix FFT algorithms	CO ₁	1. Explain the radix 2 decimation in time FFT algorithm and draw the diagram indicating the signal flow	 Lecture Problem solving 	Mid- 1/Assignment -1				
3	The Goertzel and Chirp Z transform algorithms	CO1	1. Explain Goertzel transform algorithm	^D Lecture	Mid- 1/Assignment -1				
UNIT-	II: DESIGN OF IIR AND F	IR FILTERS	5						
4	Design of IIR filters using Butterworth & Chebyshev approximations, frequency transformation techniques	CO ₂	1. Determine the order and the poles of a type-I lowpass Chebyshev filter that has a 1-dB ripple in the passband, a cutoff frequency $\Omega_p = 1000\pi$, a stopband frequency of 2000π , and an attenuation of 40dB or more for $\Omega \ge \Omega_s$.	• Lecture	Mid- 1/Assignment -1				
5	Structures for IIR systems – cascade, parallel, lattice & lattice-ladder structures, Fourier series method, Windowing techniques, design of digital filters based on least – squares	CO ₂	1. What are various types windows used in the design FIR filters? Plot their spec and compare.	Lecture	Mid-1/Seminar - 1				

	method, pade approximations				
6	Least squares design, wiener filter methods, structures for FIR systems –cascade, parallel, lattice & latticeladder structures.	CO ₂	1. Convert the analog filter with the given system function into a digital IIR filter by means of the bilinear transformation. The digital filter is to have a resonant frequency of $\omega_r = \pi/2$. $H_a(s) = \frac{s+0.1}{(s+0.1)^2+16}$	- Lecture	Mid-1/Seminar - 1
7	MID-I	DDOOESS	CO_1 and CO_2		MIDTEST-I
<u> </u>	Decimation by a factor D		1 What are multirate system	Iecture	Mid-
0	Interpolation by a factor I		List out the applications who multirate systems are used	Discussion	2/Assignment -2
9	Sampling rate conversion by a rational factor I/D, Filter design & Implementation for sampling rate conversion	CO3	1. Consider the sign $x(n) = a^n u(n), a < 1$ Determine the spectrum X(or The signal $x(n)$ is applied to decimator that reduces the raby a factor of 2. Determine to output spectrum.	 Lecture Discussion 	Mid- 2/Assignment -2
10	Filter banks, sub band coding, polyphase filters.	CO ₃	1. What are polypha structures? Explain th importance in multira systems? What are applications?	 Lecture Discussion 	Mid- 2/Assignment -2
UNIT-	IV POWER SPECTRAL E	STIMATIO	N		
11	Estimation of spectra from finite duration observation of signals, Nonparametric methods: Bartlett, Welch & Blackman & Tukey methods	CO ₄	1) What is finite word length effect? Why it occurs? Explain how it affects the performance of fixed point DSP processors	 Lecture Discussion 	Mid- 2/Assignment -2
12	Relation between auto correlation & model parameters, Yule-	CO ₄	1. What is the relationship between autocorrelation and model parameters?	 Lecture Discussion 	Mid- 2/Assignment -2

	Walker& Burg Methods		Explain Burg method for estimating power spectrum				
13	MA & ARMA models for	CO_4	1. What are AR, MA and	• Lecture	Mid-		
	power spectrum		ARMA models? What is	 Discussion 	2/Assignment -2		
	estimation.		their significance? Clearly				
UNIT-	V : ANALYSIS OF FINITE	L WORD LE	NGTH EFFECTS IN FIXEI	DPOINT DSP S	SYSTEMS		
14	Fixed, Floating Point	$\rm CO_5$	1. Write a short notes on:	Lecture	Mid-		
	Arithmetic		. End and Election	Discussion	2/Assignment -2		
			1. Fixed and Floating				
			point Aritimetic				
			n. Quantizatio				
1.7				- T /	<u>р. 1</u>		
15	ADC quantization noise &	CO_5	1. Explain the source of	• Lecture	Mid-		
	signal quality – Finite		occurrence for quantization	Discussion	2/Assignment -2		
	word length effect in IIR		noise in ADC. How can it				
	digital Filters		be minimized?				
16	Finite wordlength effects	CO ₅	1. Write a short note on	• Presentatio	Mid-		
	in FFT algorithms		finite word length effects	n	2/Assignment -2		
	in TTT ingotterminet		in FFT algorithms	Discussion			
17	MID-II		MID TEST-II				
18/19	END EXAM						