SCHEME OF COURSE WORK

Department of Information Technology

Course Details:

Course	Title	Adv	Advanced Data Structures Lab											
Course	l Code	: 151	T2109											
Program	. n: 	: M.7	ГЕСН											
Speciali	zation:	Soft	ware Ei	ngineer	ring									
Semeste	_ er 	: I												
Prerequ	ı <u> </u>	: Cor	nputer	Progra	mming	throug	gh C, Da	ta Stru	ctures,	Design a	and Ana	lysis of A	Algorith	ms
Courses	to whic	hitisa	a prerec	quisite:	Comp	uter Ne	tworks	. Data N	/lining,l	Data Bas	se Manag	gement	Systems	
Course														•
CO No.	Course	outcom	es		·									•
					•									•
CO1														
•	Impleme	ent List	ADT's	and the	ir opera	ations.								•
CO2	Develo	p progra	ams for	sorting										
CO3	Develop programs for implementing trees and their traversal.													
CO4	Implement graph traversal algorithms.													
CO5	Apply algorithm design techniques.													
Course	Outcom	e versus	Progra	ım Outo	comes:									
ourse atcomes	PO1	-PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	P:O11			
O1	S	S	Ś	S	M	M	M				S		•	
O2	. S	S	Ş	S.	Μ.	M .	M	•						•
O3	· S	·S	S	S	M·	M ·	M		•		•		•	•
O4	S	S	Ś	S	M	M			•		•		•	•
O5	S	S	S	S	M	M	M							

Teaching-Learning and Evaluation

Week	EXPERIMENT	Course Outcomes	TEACHING- LEARNING STRATEGY	Assessment Method & Schedule
1	Write a program to perform the following operations on singly linked list. i)Creation ii) Insertion iii) Deletion iv) Traversal.	CO-1	□ Lecture / Discussion □ Problem solving	Mid-Test 1 (Week 9)
2	Write a program to perform the following operations on doubly linked list. i)Creation ii) Insertion iii) Deletion iv) Traversal in both ways	CO-1	Lecture / Discussion Problem solving	Mid-Test 1 (Week 9)
3	Write a program that implements stack (its operations) using i) Arrays ii) linked list	CO-1	LectureProblem solving	Mid-Test 1 (Week 9)
4	Write a programs that implements Queue (its operations) using i) Arrays ii) linked list	CO-1	Lecture / DiscussionProblem solving	Mid-Test 1
5	Write C program that implements the Quick sort method to sort a given list of integers in ascending order.	CO-2	Lecture / DiscussionProblem solving	(Week 9)
6	Write C program that implement the Merge sort method to sort a given list of integers in ascending order	CO-2	Lecture / DiscussionProblem solving	Mid-Test 1 (Week 9)
7	Write C program that implement the SHELL sort method to sort a given list of integers in ascending order.	CO-2	Lecture / DiscussionProblem solving	Mid-Test 1 (Week 9) Assignment (Week 7-8)
8	Write a program to perform the following: i) Creating a Binary Tree of integers	CO-3	Lecture / DiscussionProblem solving	Mid-Test 1 (Week 9)

	ii) Traversing the above binary tree in preorder, inorder and postorder.			
9	Write a C program to perform the following: i)Creating a AVL Tree of integers ii)Traversing the above binary tree in preorder, inorder and postorder.	Co-3	Lecture / Discussion blem solving	Mid-Test 2 (Week 18)
10	Write a C program that uses functions to perform the following: i)Creating a SplayTree of integers ii)Traversing the above binary tree in preorder, inorder and postorder.	Co-3	Lecture / DiscussionProblem solving	Mid-Test 2 (Week 18)
11	Write a program that implements Kruskals algorithm using a disjoint set data structure. The program takes as input a file (data.txt), in which each 4line either represents a vertex or an edge. For the edge lines, the first integer on that line representing the starting vertex, the second the ending vertex, and the third the weight of the edge. Use this file to construct, line by line, the graph upon which Kruskal's algorithm will be run (do NOT hardcode this graph!).	CO-4	Lecture / Discussion Problem solving	Mid-Test 2 (Week 18)
12	Write a program to simulate various graph traversing algorithms.	CO-4	Lecture / Discussion Problem solving	Mid-Test 2 (Week 18)
13	Write a program to simulate various graph traversing algorithms.	CO-4	Lecture / Discussion Problem solving	Mid-Test 2 (Week 18)
14	Write a program to find the minimal spanning tree of a graph using the Prim's algorithm. The program should be able to read in the weight matrix of a graph and produce the minimal spanning tree Generate weight matrices (using a random number generator)	CO-4	Lecture / Discussion Problem solving	Mid-Test 2 (Week 18)
15	Write a program to find the closest pair of points using a divide and	CO-5	Lecture / DiscussionProblem solving	Mid-Test 2 (Week 18)

19/20	END EXAM			
18	Mid-Test 2			
	also required			
	any order, so, a presorting step is			
	the numbers may be generated in			
	their probabilities. Remember that			
	given set of numbers together with			
	the optimal binary search tree for a		1 Toblem Solving	(Week 10)
16	Use dynamic programming to find	CO-5	Lecture / DiscussionProblem solving	Mid-Test 2 (Week 18)
1.0	square as input to the algorithm.	CO F	- Lastura / Diagrasian	Mid Took 2
	large number of points in a unit			
	number generator to generate a			
	conquer strategy. Use the random			