SCHEME OF COURSE WORK

Department of Information Technology

Course Details:

Course Title	Advanced Data Structures and Algorithms
Course Code	: 15IT2104
Program:	: M.TECH
Specialization:	Software Engineering
Semester	I:I
Prerequisites	: Computer Programming through C, Data Structures, Design and Analysis of Algorithms
I	·
Courses to which	h it is a prerequisite: Computer Networks. Data Mining,Data Base Management Systems.

Course Outcomes (COs):

CO2

CO3

CO4

CO5

S

S

S

S

S

·S

S

S

.

S

S

Ś

S

.

S

S·

S

S

.

Μ

М·

М

М

.

-

М

М

М

М

М

М

Μ

CO No. (Course o	outcom	es		· .									•
														•
CO1														
I	Use Abst	tract Da	ta types	δ.										•
CO2	Implement Priority Queues and Sorting Algorithms													
CO3	Discover solutions for graph problems.									<u> </u>				
CO4	Devise solutions using algorithm design techniques													
CO5	Implement advanced data structures.								<u> </u>					
Course C	Course Outcome versus Program Outcomes:													
Course - outcomes	PO1	·PO2	PO3	PO4	PO5	PO6	PO7 ·	PO8	PO9	PO10	PO11	•		-
201	S	S	Ś	S	М	Μ	М		•	•	S	•	•	•

.

.

•

.

.

.

.

.

.

•

Teaching-Learning and Evaluation

Week	TOPIC / CONTENTS	Course Outcomes	Sample questions	TEACHING- LEARNING STRATEGY	Assessment Method & Schedule	
1	Lists, Stacks and Queues: Abstract Data Types (ADTs), The List ADT, Vector and list in the STI, Implementation of vector, Implementation of list	CO-1	Compare and contrast between vector and a list.	 Lecture / Discussion Problem solving 	Assignment (Week 7-8) Mid-Test 1 (Week 9)	
2	The Stack ADT, The Queue ADT. Trees: The Search Tree ADT – Binary Search Trees	CO-1	Give the real time applications of stack .	 Lecture / Discussion Problem solving 	Mid-Test 1 (Week 9)	
3	AVI. Trees, Splay Trees, B-Trees	CO-2	Demonstrate the operations of splay trees and its implementation	 Lecture Problem solving 	Mid-Test 1 (Week 9)	
4	Hashing: General idea, Hash Function, Separate Chaining, Hash Tables Without Linked Lists, Rehashing, Extendible Hashing.	CO-1	Explain different techniques in hashing and discuss their limitations.	 Lecture / Discussion Problem solving 	Assignment (Week 7-8) Mid-Test 1 (Week 9)	
5	Priority Queues: Implementations, Binary Heap, Applications of Priority Queues, <i>d</i> -Heaps, Leftist Heaps	CO-2	Give the applications of priority queues.	 Lecture / Discussion Problem solving 	Assignment (Week 7-8) Mid-Test 1 (Week 9)	
6	Skew Heaps, Binomial Queues. Sorting: Sorting: A Lower Bound for Simple sorting Algorithms	CO-2,CO-5	Explain the organization of data in binomial queues	 Lecture / Discussion Problem solving 	Mid-Test 1 (Week 9)	
7	Shellsort, Heapsort, Mergesort, Quicksort, Indirect Sorting, A General Lower Bound for sorting, Bucket Sort, External Sorting.	CO-2	Compare the complexities of merge and quick sort .	 Lecture / Discussion Problem solving 	Mid-Test 1 (Week 9) Assignment (Week 7-8)	
8	The Disjoint Set Class: Equivalence Relations, The Dynamic Equivalence Problem, Basic Data Structure, Smart Union Algorithms	CO-1,CO-3, CO-4	Explain different Smart union algorithms with an example	 Lecture / Discussion Problem solving 	Mid-Test 1 (Week 9)	
9	Mid-Test 1					
10	Path Compression, Worst Case of Union-by- Rank and Path Compression, An Application.	CO-1, CO2,CO-3 ,CO-4	Explain how path compression takes place and what is the need of path compression	 Lecture / Discussion Problem solving 	Mid-Test 2 (Week 18)	
	Graph Algorithms: Definitions, Topological sort					
11	Shortest-Path Algorithms, Network Flow Problems, Minimum Spanning Tree, Applications of Depth-First Search, introduction to NP- Completeness.	CO-2,CO-3	Give the algorithm for prims algorithm and discuss its complexity	 Lecture / Discussion Problem solving 	Assignment (Week 15-17) Mid-Test 2 (Week 18)	
12	Algorithm Design Techniques: Greedy Algorithms, Divide and Conquer	CO-4	Give the optimal solution for knapsack problem using greedy method	 Lecture / Discussion Problem solving 	Mid-Test 2 (Week 18)	
13	Dynamic Programming, Randomized Algorithms, Backtracking Algorithms	CO-4	Explain the mechanism in backtracking algorithms	 Lecture / Discussion Problem solving 	Mid-Test 2 (Week 18)	
14	Amortized Analysis: An Unrelated Puzzle, Binomial Queues, Skew Heaps, Fibonacci Heaps, Splay Trees.	CO-5	What are skew heaps.	 Lecture / Discussion Problem solving 	Assignment (Week 15-17) Mid-Test 2 (Week 18)	
15	Advanced Data Structures and	CO-5	Give the characteristics of red	Lecture / Discussion	Mid-Test 2	

19/20	END EXAM				
18	Mid-Test 2				
17	Treaps, <i>k-</i> d Trees, Pairing Heaps	CO-5	What treaps and design an algorithm for implementing operations of treaps.	 Lecture / Discussion Problem solving 	Mid-Test 2 (Week 18)
16	Deterministic Skip lists, AA-Trees	CO-5	Explain the advantages of skip lists	 Lecture / Discussion Problem solving 	Assignment (Week 15-17) Mid-Test 2 (Week 18)
	Implementation: Top-Down Splay Trees, Red- Black Trees		black trees	Problem solving	(Week 18)