SCHEME OF COURSE WORK

Department of Information Technology

Course Details:

Course	Title Advanced Data Structures and Algorithms													
Course	Code	: 131	T2104											
Progran	_! n: 	: M.7	ГЕСН											
Speciali	zation:	Soft	ware E	ngineer	ing									
Semeste	_! er 	: I												
Prerequ	ıisites I	: Coi	mputer	Progra	ımming	throug	gh C, Da	ıta Stru	ctures,	Design a	and Anal	lysis of	Algorith	ms
Courses	to whic	h it is a	a prere	quisite:	: Compi	uter Ne	tworks	. Data N	dining,	Data Ba	se Mana	gement	t Systems	S
Course	Outcom	es (COs):											
CO No.	Course	outcom	ies		•									•
CO1														
•	Use Abs	stract Da	ata type	s.										
CO2	Implement Priority Queues and Sorting Algorithms													
CO3	Discover solutions for graph problems.													
CO4	Devise solutions using algorithm design techniques													
CO5	Implement advanced data structures.													
Course	Outcom	e versus	Progra	am Out	comes:									
ourse	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11		•	
otcomes O1	S	S	Ś	S	M	M	M	•	•	•	S		•	
<i>J</i> 1		3			M .	M .	IVI	-) .		•	
O2	. S	S	Ş	S.	M .	Μ .	M							
O3	· S	·S	S	S·	M·	M ·	M			-				
O4	S	S	Ś	S	M	M		•	•	•		ē		ē
O5	S	S	S	S	M	M	M							

Teaching-Learning and Evaluation

Week	TOPIC / CONTENTS	Course Outcomes	Sample questions	TEACHING- LEARNING STRATEGY	Assessment Method & Schedule	
1	Lists, Stacks and Queues: Abstract Data Types (ADTs), The List ADT, Vector and list in the STI, Implementation of vector, Implementation of list	CO-1	Compare and contrast between vector and a list.	Lecture / DiscussionProblem solving	Assignment (Week 7-8) Mid-Test 1 (Week 9)	
2	The Stack ADT, The Queue ADT. Trees: The Search Tree ADT – Binary Search Trees	CO-1	Give the real time applications of stack .	Lecture / DiscussionProblem solving	Mid-Test 1 (Week 9)	
3	AVI. Trees, Splay Trees, B-Trees	CO-2	Demonstrate the operations of splay trees and its implementation	LectureProblem solving	Mid-Test 1 (Week 9)	
4	Hashing: General idea, Hash Function, Separate Chaining, Hash Tables Without Linked Lists, Rehashing, Extendible Hashing.	CO-1	Explain different techniques in hashing and discuss their limitations.	Lecture / Discussion Problem solving	Assignment (Week 7-8) Mid-Test 1 (Week 9)	
5	Priority Queues: Implementations, Binary Heap, Applications of Priority Queues, & Heaps, Leftist Heaps	CO-2	Sive the applications of priority queues.	Lecture / Discussion Problem solving	Assignment (Week 7-8) Mid-Test 1 (Week 9)	
6	Skew Heaps, Binomial Queues. Sorting: Sorting: A Lower Bound for Simple sorting Algorithms	CO-2,CO-5	Explain the organization of data in binomial queues	Lecture / DiscussionProblem solving	Mid-Test 1 (Week 9)	
7	Shellsort, Heapsort, Mergesort, Quicksort, Indirect Sorting, A General Lower Bound for sorting, Bucket Sort, External Sorting.	CO-2	Compare the complexities of merge and quick sort .	Lecture / Discussion Problem solving	Mid-Test 1 (Week 9) Assignment (Week 7-8)	
8	The Disjoint Set Class: Equivalence Relations, The Dynamic Equivalence Problem, Basic Data Structure, Smart Union Algorithms	CO-1,CO-3, CO-4	Explain different Smart union algorithms with an example	Lecture / DiscussionProblem solving	Mid-Test 1 (Week 9)	
9	Mid-Test 1					
10	Path Compression, Worst Case of Union-by-Rank and Path Compression, An Application.	CO-1, CO2,CO-3 ,CO-4	Explain how path compression takes place and what is the need of path compression	Lecture / DiscussionProblem solving	Mid-Test 2 (Week 18)	
	Graph Algorithms: Definitions, Topological sort					
11	Shortest-Path Algorithms, Network Flow Problems, Minimum Spanning Tree, Applications of Depth-First Search, introduction to NP-Completeness.	CO-2,CO-3	Give the algorithm for prims algorithm and discuss its complexity	Lecture / DiscussionProblem solving	Assignment (Week 15-17) Mid-Test 2 (Week 18)	
12	Algorithm Design Techniques: Greedy Algorithms, Divide and Conquer	CO-4	Give the optimal solution for knapsack problem using greedy method	Lecture / DiscussionProblem solving	Mid-Test 2 (Week 18)	
13	Dynamic Programming, Randomized Algorithms, Backtracking Algorithms	CO-4	Explain the mechanism in backtracking algorithms	Lecture / DiscussionProblem solving	Mid-Test 2 (Week 18)	
14	Amortized Analysis: An Unrelated Puzzle, Binomial Queues, Skew Heaps, Fibonacci Heaps, Splay Trees.	CO-5	What are skew heaps.	Lecture / DiscussionProblem solving	Assignment (Week 15-17) Mid-Test 2 (Week 18)	
15	Advanced Data Structures and	CO-5	Give the characteristics of red	Lecture / Discussion	Mid-Test 2	

	Implementation: Top-Down Splay Trees, Red- Black Trees		black trees	Problem solving	(Week 18)
16	Deterministic Skip lists, AA-Trees	CO-5	Explain the advantages of skip lists	Lecture / DiscussionProblem solving	Assignment (Week 15-17) Mid-Test 2 (Week 18)
17	Treaps, k-d Trees, Pairing Heaps	CO-5	What treaps and design an algorithm for implementing operations of treaps.	Lecture / DiscussionProblem solving	Mid-Test 2 (Week 18)
18	Mid-Test 2				
19/20	END EXAM				