SCHEME OF COURSE WORK

Course Details:

Course Title	:Advance Digital Control Systems						
Course Code	: 15EE2204	L T P	\mathbf{C}	:3003			
Program:	: M.Tech.						
Specialization:	: Power System and Control Automation						
Semester	r :I Sem						
Prerequisites : Control Systems, Digital Control Systems							
Courses to which it is a prerequisite : To all Digital Control Courses							

Course Outcomes (COs):

1	Solve problems related to State space representation of discrete time systems and determine					
	the stability of discrete time systems using different techniques like Jury stability, bilinear					
	transformation and Liapunov.					
2	Solve problems related to design of discrete time control system by conventional methods.					
3	Apply knowledge in designing Controllers and Observers.					
4	Explain the concepts of kalman filter, Regulators and adaptive control.					
5	Develop adequate knowledge in the digital simulation concepts and expose to the custom					
	designed chips.					

Program Outcomes (POs):

A graduate of M.Tech (Power System and Control Automation) will be able to

1	Acquire in depth knowledge in the area of power system control and automation.
2	Attain the ability to prepare models with respect to any kind of problem on hand and try to solve related to power system
	control and automation.
3	Obtain the capability of problem solving and original thinking to arrive at feasible and optimal solutions considering societal
	and environmental factors.
4	Have sufficient knowledge base, sufficient to apply the techniques and tools to solve power system problems.
5	Use the state-of-the-art tools for modeling, simulation and analysis of problems related to power systems.
6	Attain the capability to contribute positively to collaborative and multidisciplinary research to achieve common goals.
7	Demonstrate knowledge and understanding of power system engineering and management principles and apply the same
	for efficiently carrying out projects with due consideration to economical and financial factors.
8	Communicate confidently, make effective presentations and write good reports to engineering community and society.
9	Recognize the need for life-long learning and have the ability to do it independently.
10	Become socially responsible and follow ethical practices to contribute to the community for sustainable development of
	society.
11	Independently observe and examine critically the outcomes of his actions and reflect on to make corrective measures and
	move forward positively.

Course Outcome versus **Program Outcomes:**

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO-1	M	M	S	M	M	S	M	M	M	M	M
CO-2	M	M	M	S	M	M	M	M	M	M	M
CO-3	M	S	M	S	M	M	M	M	M	M	M
CO-4	M	S	M	M	S	M	M	M	M	M	M
CO-5	M	M	M	S	S	M	M	M	M	M	M

Assessment Methods:

Teaching-Learning and Evaluation

Week	TOPIC / CONTENTS	Course Outcomes	Sample questions	TEACHING- LEARNING STRATEGY	Assessment Method & Schedule
1	State Space Representation of discrete time systems, Pulse Transfer Function Matrix solving discrete time state space equations, State transition matrix and it's Properties	CO-1	Pulse Transfer Function State transition matrix	LectureProblem solving	Assignment (Week 2 - 4)
2	Methods for Computation of State Transition Matrix, Discretization of continuous time state Space equations	CO-1	Methods for Computation of State Transition Matrix	LectureProblem solving	Mid-Test 1 (Week 9)
3	Stability Analysis of closed loop systems in the Z-Plane, Jury stability test	CO-1	Jury stability test	LectureProblem solving	Quiz (Week 2 - 4)
4	Stability Analysis by use of the Bilinear Transformation and Routh Stability criterion, Stability analysis using Liapunov theorems.	CO-1	Stability analysis using Liapunov theorems.	 Lecture Problem solving 	
5	Design of digital control systems based on Root locus techniques	CO-2		LectureProblem solving	
6	Design of digital control based on the frequency response methods-Bilinear transformation, design procedure in the wplane, lead, lag and Lead-lag compensators,	CO-2	lead, lag and Lead-lag compensators,	 Lecture Problem solving 	
7	digital PID controllers, Design digital control through dead beat response methods.	CO-2		Lecture Problem solving	
8	Concept of controllability and observability	CO-3			
9					
10	Design of state feedback controller through pole placement-Necessary and sufficient conditions, Ackerman's formula	CO-3	state feedback controller through pole placement-	LectureProblem solving	Mid-Test 2 (Week 18)
11	State observers-Full order,	CO-3		LectureProblem solving	Assignment (Week 11-13)
12	Reduced Order observer	CO-3	observers	LectureProblem solving	Quiz (Week 12 -1 4)
13	Min/Max principle, Linear Quadratic Regulators	CO-4		LectureProblem solving	
14	Kalman Filters, State Estimation through kalman Filters, Introduction to adaptive controls	CO-4		Lecture Problem solving	
15	Introduction, Digital Simulation- Digital Modeling with Sample and Hold Devices, State Variable Formulation, Numerical Integration,	CO-5	Kalman Filters, State Estimation through kalman Filters,	 Lecture Problem solving 	Assignment (Week 15)
16	Rectangular Integration, Frequency Domain Characteristics-Frequency Warping, Frequency Prewarping.	CO-5	Frequency Warping, Frequency Prewarping.	LectureProblem solving	
17	Introduction, Microprocessor Control of Control Systems, Single-Board Controllers with Custom-Designed Chips, The Galil	CO-5	The Galil DMC-105 Board, Digital Signal Processors-	 Lecture Problem solving 	

	DMC-105 Board, Digital Signal Processors- The Texas Instruments TMS320 DSP's, Development Systems		
	and Support Tools.		
18	Mid-Test 2		
19/20	END EXAM		

Model Question Paper

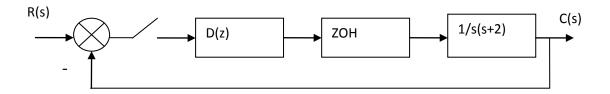
UNIT-I

1 Obtain the state transition matrix of the following discrete time system

$$\begin{bmatrix} x1(k+1) \\ x2(k+1) \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -0.16 & -1 \end{bmatrix} \begin{bmatrix} x1(k) \\ x2(k) \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \end{bmatrix} u(k) \text{ and } y(k) = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x1(k) \\ x2(k) \end{bmatrix}$$

Then obtain the state x(k) and output y(k) where input u(k) = 1 for k=0,1,2,... (12 Marks)

OR


2(a) Consider the discrete-time unity feedback control system (with sampling period T=1Sec) whose open loop transfer function is given by

$$G(z) = \frac{k(0.3679z + 0.2642)}{(z - 0.3679)(z - 1)}.$$
 Determine the range of gain K for stability by using Jury's stability test? (7 Marks)

(b) Consider the characteristic polynomial $\Delta(z) = 2z^4 + 7z^3 + 10z^2 + 4z + 1 = 0$ determine the stability of the system. (5 Marks)

UNIT-II

3 Consider the feedback control system the plant transfer function is G(s) = k/s(s+2)

Design a lag compensator to satisfy the following specifications.

(i)
$$K_v \ge 4$$
 (ii) Phase margin = 40^0 (iii) $GM \ge 10 dB$ assume T=0.4 sec. (12 Marks)

OR

4 a) Explain the dead beat response characteristics

(4 Marks)

(b) The plant transfer function of a digital control system is given by

 $G(z) = \frac{z + 0.5}{z^2 - z - 1} \text{ design a digital controller so that a dead beat response is obtained when the input is a unit step function?} \tag{8 Marks}$

UNIT-III

5. A discrete time system is described by the state model

$$x (k+1) = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -4 & -2 & -1 \end{bmatrix} x(k) + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} r(k)$$

Design a state feedback controller which will place the closed loop poles at $z=-0.5\pm j$ 0.5 and z=0. Verify the result by applying Ackermann's formula. (12 Marks)

OR

6. Consider the system described by the state model x(k+1) = F x(k) and y = c x(k), where

 $F = \begin{bmatrix} -1 & 1 \\ 1 & -2 \end{bmatrix}$; and $C = \begin{bmatrix} 1 & 0 \end{bmatrix}$ design a full order observer. The desired Eigen values for the observer matrix are M1= -5 and M2= -5 (12 Marks)

UNIT-IV

7. a) Explain the state estimation through kalman filters?

(6 Marks)

b) Derive the matrix reccati equation?

(6 Marks)

OR

- 8.(a) Explain Discrete Time Linear Quadratic State Regulator? (8 Marks)
 - (b) Write short notes on adaptive control?

(4 Marks)

UNIT-V

- 9(a) Write a short note on frequency warping and prewarping? (6 Marks)
- (b) Explain in detail digital simulation through ample and hold devices? (6 Marks)

OR

- 10 (a) Write a short note on single board controllers with custom designed chips? (6 Marks)
 - (b) With a neat diagram explain microprocessor control of control systems? (6 Marks)