SCHEME OF COURSE WORK

Course Details:

Course Title	AUTOMATA and COMPILER DESIGN					
	13CS2110					
Course Code		LTPC	4003			
Programme:	M.Tech.					
Specialization:	Computer Science & Engineering					
Semester	II					
Prerequisites Formal Languages and Automata Theory, Graph Theory.						
Courses to which	it is a prerequisite -					

Course Outcomes (CO):

At the end of the course, a student will be able to

1	Explain deterministic and non-deterministic machines.
2	Comprehend the hierarchy of problems arising in the computer sciences.
3	Design a deterministic finite-state machine to accept a specified language.
4	Explain how a compiler can be constructed for a simple context free language.
5	Determine a language's location in the Chomsky hierarchy (regular sets, context-free,
	context-sensitive, and recursively enumerable languages).

Programme Outcomes (PO):

A graduate of Computer Science & Engineering

1	Graduates will demonstrate knowledge in core subjects of Computer Science and
	Engineering and the ability to learn independently.
2	Graduates will demonstrate the ability to design a software application or process that
	meets desired specifications within the constraints.
3	Graduates will demonstrate the ability to solve problems relevant to industries and research
	organizations.
4	Graduates will develop innovative thinking capabilities to promote research in core and
	trans-disciplinary areas
5	Graduates will be familiar with modern engineering software tools and equipment to
	analyze computer science and engineering problems.
6	Graduates will demonstrate the ability to collaborate with engineers of other disciplines and
	work on projects requiring multidisciplinary skills.
7	Graduates will acquire project management and finance control abilities.
8	Graduates will be able to communicate effectively in both verbal and written forms.
9	Graduates will engage themselves in lifelong learning in the context of rapid technological
	changes in computer science and engineering
10	Graduates will demonstrate an appreciation of ethical and social responsibilities in
	professional and societal context.
11	Graduates will demonstrate the ability in carrying out tasks independently and by reflective
	Learning

Course Outcome versus Program Outcomes:

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO-1	S										М
CO-2			S	Μ					Μ		
CO-3		S									М
CO-4		Μ			Μ				Μ		
CO-5			S	Μ							

S - Strongly correlated, M - Moderately correlated, Blank - No correlation

Lesson Plan:

UNIT	Торіс	No classes
	Formal Languages and Regular Expressions	1
	Languages, Definition	1
	Languages regular expressions	1
T T :4 T	Finite Automata – DFA, NFA	2
Unit I	Conversion of regular expression to NFA	2
	Conversion from NFA to DFA	1
	Applications of Finite Automata to lexical analysis	1
	lex tools	1
	No. of Classes	10
	Context Free grammars and parsing : Context free grammars	1
	derivation, parse trees	1
	ambiguity LL(K) grammars and LL(1) parsing	2
Unit II	Bottom up parsing, handle pruning	2
	LR Grammar Parsing, LALR parsing	2
	Parsing ambiguous grammars	1
	YACC programming specification	1
	No. of Classes	10
		ļ
	Semantics: Syntax directed translation	1
	S-attributed and L-attributed grammars	2
	Intermediate code – abstract syntax tree	1
	translation of simple statements and control flow statements.	1
Unit III	Context Sensitive features – Chomsky hierarchy of languages and	2
	recognizers	
	Type checking, type conversions,	1
	equivalence of type expressions,	1
	overloading of functions and operations.	1
	No. of Classes	10

	Symbol table, Storage organization	1
	storage allocation strategies scope access to now local names,	2
	parameters	
Unit IV	language facilities for dynamics storage allocation	1
Unit IV	Code optimization Principal sources of optimization,	2
	optimization of basic blocks	1
	peephole optimization	1
	flow graphs, optimization techniques.	2
	No. of Classes	10
Unit V	Code generation: Machine dependent code generation	2
	object code forms	2
	generic code generation algorithm	2
	Register allocation and assignment	2
	Using DAG representation of Block	2
	No. of Classes	10
	Total No. of Classes	50

Assessment	Methods:

Assignment / Quiz / Mid-Test / End Exam

Teaching-Learning and Evaluation

Week	Topics/Contents	Course	Sample Questions	Teaching -	Assessment
		Outcomes		Learning	Method &
				Strategy	Schedule
1	Formal Languages and Regular Expressions, Languages, Definition, Languages regular expressions	CO-1	1) Define Language and Regular expression	Lecture Discussion Solving Exercise	Quiz(Week-4) Assignment (Week 6- 8) Mid Test-1
2	Finite Automata – DFA, NFA, Conversion of regular expression to NFA	CO-1	 Differentiate DFA and NFA. Convert the following Regular Expression into NFA (011+10)* 	Lecture Discussion Solving Exercise	Quiz(Week-4) Assignment (Week 6- 8) Mid Test-1
3	Conversion from NFA to DFA, Applications of Finite ,Automata to lexical analysis, lex tools	CO-1	1) Design DFA for the language os strings ends with 11 and convert the NFA to DFA.	Lecture Discussion Solving Exercise	Quiz(Week-4) Assignment (Week 6- 8) Mid Test-1
4	Context Free grammars and parsing : Context free grammars, derivation, parse	CO-2	1) Define Context Free Grammar and generate the parse	Lecture Discussion Solving	Quiz(Week-4) Assignment (Week 6- 8) Mid Test-1

	trees	1	tree for the	Evercise	
	ambiguity II (K) grammars		following	LACICISC	
	and LL(1) parsing		arommor		
	and LL(1) parsing				
			S->AS/BS/*		
			A->aA/^		
			B->bB.		
5	Bottom up parsing, handle	CO-2	1) Construct SLR	Lecture	
	pruning		parsing table for	Discussion	
	LR Grammar Parsing, LALR		the following	Solving	
	parsing		grammar.	Exercise	O_{-1} (W ₂ -1, 0)
			$E \rightarrow E + T/T$		Quiz(week-8)
			T->T*F		(Week 6- 8)
			$F_{->}(F)/id$		(Week 0= 0) Mid Test-1
6	Parsing ambiguous grammars	CO-2	$1 \rightarrow (D)/d$	Lecture	
0	VACC programming	00-2	Vacc tool with an	Discussion	Quiz(Week-8)
				Discussion Calacina	Assignment
	specification		example.	Solving	(week 6- 8)
				Exercise	Mid Test-I
/	Semantics: Syntax directed	0-3	Explain about	Lecture	Quiz(Week-8)
	translation		S-attributed and L-	Discussion	Assignment
	S-attributed and L-attributed		attributed		(Week 6- 8)
	grammars		grammars.		Mid Test-1
8	Intermediate code – abstract	CO-3	1) Represent the	Lecture	
	syntax tree		following	Discussion	
	translation of simple		expression in		Quiz(Week 8)
	statements and control flow		Triples, indirect		Assignment
	statements.		Triples		(Week 6-8)
			X=(a+b)*(c+d)		Mid Test-1
9	MID TEST-1			Revision	
				Discussion	
10	Context Sensitive features –	CO-3	1) Explain about	Lecture	O_{1} (W ₁ 1 12)
	Chomsky hierarchy of		chomsky hierarchy	Discussion	Quiz(week-12)
	languages and recognizers		languages with an		(Week 15- 16)
			examples		Mid Test-?
11	Type checking type	CO-3	1) Explain about	Lecture	1110 1051 2
	conversions equivalence of		Type checking and	Discussion	
	type expressions		type conversions	D1500551011	Quiz(Week-12)
	type expressions,		type conversions.		Assignment
	overloading of functions and				(week 15-10)
12	operations.		1) Emploin about	Lastura	Mild Test-2
12	Symbol table, Storage	0-4	1) Explain about	Discure	
	organization		various storage	Discussion	Quiz(Week-12)
	storage allocation strategies		allocation		Assignment
	scope access to now local		strategies of		(Week 15-16)
	names, parameters		symbol table.		Mid Test-2
13	language facilities for	CO-4	1) Explain about	Lecture	Quiz(Week-15)
	dynamics storage allocation		various code	Discussion	Assignment
	Code optimization Principal		optimization		(Week 15- 16)
	sources of optimization		techniques.		Mid Test-2
14	optimization of basic blocks	CO-4	1) what is the	Lecture	Quiz(Week-15)
	peephole optimization		importance of	Discussion	Assignment
	flow graphs antimization		naanhala		(WEEK 13-10) Mid Test 2
		•	1 DEEDHOLE	•	

	techniques.		optimization and explain with an example.		
15	Code generation: Machine dependent code generation object code forms generic code generation algorithm	CO-5	1) Explain about various object forms in code generation.	Lecture Discussion	Quiz(Week-15) Assignment (Week 15- 16) Mid Test-2
16	Register allocation and assignment Using DAG representation of Block	CO-5	1) Briefly explain register allocation and assignment strategies in code generation.	Lecture Discussion	Quiz(Week-15) Assignment (Week 15- 16) Mid Test-2
17	MID TEST-2			Revision Discussion	
18	END EXAM				

Faculty Member N.Durga Prasad Assistant Professor CSE Department