SCHEME OF COURSE WORK:

Course Details:

Course Title	VIRTUAL LAB ON FLUID AND THERMAL SCIENCES						
Course Code	19ME22M1 LTPC 0 0 3 1.5					1.5	
Program	M.Tech.						
Specialization	Thermal Engineering						
Semester	Ι						
Prerequisites	Engineering Thermodynamics, Fluid Mechanics and Heat Transfer						
Course to which is a prerequisite	NA						

Course Outcomes:

CO1	Determine major and minor losses for internal flow through a pipe, nozzle-diffuser and able to
	experiment with flow measurement devices like Venturimeter
CO2	Explain heat conduction through different geometrical shapes and compare the results
	obtained
CO3	Explain heat conduction through composite systems of different cross-sections and validate
	results through comparison.
CO4	Determine the overall heat transfer coefficient of parallel and counter flow heat exchanger.
CO5	Identify relation between intensity of the radiation from a flat source or point source with
	distance.

Program Outcomes:

PO	Program Outcome (PO)
Code	
PO1	exhibit in-depth knowledge in thermal engineering specialization
PO2	think critically and analyse complex engineering problems to make creative
	advances in theory and practice
PO3	solve problem, think originally and arrive at feasible and optimal solutions with
	due consideration to public health and safety of environment
PO4	use research methodologies, techniques and tools, and will contribute to the
	development of technological knowledge
PO5	apply appropriate techniques, modern engineering tools to perform modeling of
	complex engineering problems with knowing the limitations
PO6	understand group dynamics, contribute to collaborative multidisciplinary scientific
	research
PO7	demonstrate knowledge and understanding of engineering and management
	principles and apply the same with due consideration to economical and financial
	factors
PO8	communicate complex engineering problems with the engineering community and
	society, write and present technical reports effectively
PO9	engage in life-long learning with a high level of enthusiasm and commitment to
	improve knowledge and competence continuously
PO10	exhibit professional and intellectual integrity, ethics of research and scholarship
	and will realize the responsibility towards the community
PO11	examine critically the outcomes of actions and make corrective measures

Course Outcome Vs Program Outcomes

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	S	S	S								
CO2	S	S	S								
CO3	S	S	S								
CO4	S	S	S								
CO5	S	S	S								

S - Strongly correlated, M - Moderately correlated, Blank - No correlation

Assessment Methods:

Day to Day Evaluation (Record and Observation):	20M
Two mid-term examination at the end of each cycle:	20M
End Semester Examination:	60M

Teaching-Learning and Evaluation

Week	Topic/Content	CO	Sample Questions	Teaching-	Assessment
				Learning	method &
				Strategy	Schedule
1	Demo on Virtual Lab				
	and its Functionality				
2	Energy losses in pipe	CO1	Determine the pressure	Practical	Day to day
	flow		drop in a pipe flow	Demo and	to evaluation
3	Flow through Venturi	CO1	Estimate the volumetric	Exercise	Observation
	meter		flow rate of the fluid	the	(10M) and
			flow through a pipe by	practical	Record
			making use of Venturi-	on virtual	submission
			meter	mode	(10M)
4	Incompressible flow	CO1	Estimate the pressure		
	through nozzle and a		and velocity variations		
	diffuser		for a flow through		
			nozzle		
5	Conduction analysis	CO2	Determine the 1D heat		
	of a single material		conduction through a		
	sphere		sphere		
6	Conduction analysis	CO2	Determine the 1D heat		
	of a single material		conduction through a		
	cylinder		sphere		
7	To investigate the	CO5	Explain the Lamberts		
	Lambert's distance		distance Law		
	law				
8	Conduction analysis	CO3	Determine equivalent		
	of a double material		thermal conductivity of		
	slab		a composite slab		

Mid-Term Examination 1							
9	Conduction analysis	CO3	Determine equivalent				
	of a double material		thermal conductivity of				
	slab		a composite slab				
10	Conduction analysis	CO3	Determine the thermal				
	of a double material		conductivity of an				
	sphere		insulating powder by				
			making use sphere-				
			sphere method				
11	Conduction analysis	CO3	Determine critical radius				
	of a double material		of insulation of an				
	cylinder		insulation layer over a	Practical	Day to day		
			pipe for minimizing the	Demo and	to evaluation		
			heat loss	Exercise	Observation		
12	To determine the	CO4	Determine the	the	(10M) and		
	overall heat transfer		effectiveness and OHTC	practical	Record		
	coefficient (U) in the		(Theoretical and	on virtual	submission		
	parallel flow heat		Experimental) of a	mode	(10 M)		
	exchanger.		parallel flow heat		(10111)		
			exchanger				
13	To determine the	CO4	Determine the				
	overall heat transfer		effectiveness and OHTC				
	coefficient (U) in the		(Theoretical and				
	counter flow heat		Experimental) of a				
	exchanger.		parallel flow heat				
1.4			exchanger				
14	To investigate the		Describe the role of				
	Lambert's direction		Lambert's cosine law in				
	law (Cosine law)		radiation				
Mid Term Examination-II							
End Term Examination							