SCHEME OF COURSE WORK

Course Details:

Course Title	:BRIDGE ENGINEERING						
Course Code	: 15CE2205	L P C :403					
Program:	: M. Tech.						
Specialization:	: Structural Engineering						
Semester	:I						
Prerequisites	: Strength of Materials, Structural Analysis, R.C Structures						
Courses to which it is a prerequisite : None							

Course Outcomes (COs):

At the end of the course, the student will be able to:

1	Discuss the IRC standard live load and design the deck slab type bridges.					
2	Analyze the box culvert for the given loading and detail the box culverts.					
3	Design and detail of T-beam bridges.					
4	Design and check the stability of piers and abutments.					
5	Discuss the bridge foundations and prepare the bar bending schedule.					

Program Outcomes (POs): Post graduates will be able to:

1	Synthesize existing and new knowledge in various sub areas of structural engineering
2	Analyse complex engineering problems critically with adequate theoretical background for practical applications.
3	Evaluate a wide range of feasible and optimal solutions after considering safety and environmental factors.
4	Demonstate the ability to pursue research by conducting experiments and extract the relevant information through literature surveys.
5	Use state –of- the- art of modern tools for interpreting the behaviour and modeling of complex engineering structures.
6	Attain the capability to work in multi disciplinary teams to achieve common goals.
7	Demonstrate the knowledge to perform the projects efficiently in multi disciplinary environments after consideration of economical and financial matters.
8	Communicate effectively on complex engineering activities to prepare reports and make presentations.
9	Engage in life-long learning independently to improve knowledge.
10	Understand the responsibility of carrying out professional practices ethically for sustainable development of society.
11	Examine critically and independently one's actions and take corrective measures by learning from mistakes.

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO-1	S	S	Μ	Μ							М
CO-2	S	S	Μ	Μ							М
CO-3	S	S	М	М							М
CO-4	S	S		М							М
CO-5	S	S	S	Μ	S						М

S - Strongly correlated, M - Moderately correlated, Blank - No correlation

Assessment Methods:

Assignment / Seminar / Mid-Test / End Exam

Teaching-Learning and Evaluation

Week No.			Sample questions	TEACHING- LEARNING STRATEGY	Assessment Method & Schedule
1	Introduction-site selection-soil exploration for site-selection of bridge type-economical span-no of spans- determination of HFL-general arrangement drawing.	CO-1	Derive the economical span length of a bridge. Discuss the characteristics of site for an ideal bridge.	 Lecture/ Discussion 	
2	Width of carriage way- clearances-loads to be considered-dead load-IRC standard live load-impact effect-review of IRC Loading.	CO-1 CO-1	Explain about the carriage way- clearances in road bridge.	• Lecture	
3	Application of live loads on deck slab- wind load-longitudinal forces-centrifugal forces-horizontal forces due to water currents-buoyancy effect-earth pressure.	CO-1	Explain about the various loads to be considered in design of road bridges	 Lecture Problem solving 	
4	Culverts: introduction, analysis and design of box culvert-slab culverts.	CO-2	Analyse and design a box culvert for the given loading.Design a solid slab bridge to suit the following requirements	 Lecture Problem solving 	Assignment
5	Pipe culverts-reinforcement detailing and bar bending schedule need to be prepared.	CO-2	Analyse and design a pipe culvert for the given loading. Sketch the reinforcement details of a box culvert.	 Lecture Lecture Problem solving 	
6	T-Beam Bridges: introduction-analysis of T-Beam girder bridges.	CO-3	Analyse and design a T-Beam bridge for the given loading.Sketch the reinforcement details of all the components of a bridge.	 Lecture Problem solving Problem solving 	
7	Design of T-Beam girder bridges.	CO-3	Analyse and design a T-Beam bridge for the given loading. Sketch the reinforcement details of all the components of a bridge.	 Lecture Problem solving Lecture Problem solving 	Assignment

8	Reinforcement detailing and bar bending	CO-3	Sketch the reinforcement	Lecture	
	schedule need to be prepared.		details of all the components	Problem solving	
			of a bridge.		
			Prepare the bar bending		
			schedule of all the components of a bridge.	Lecture Problem	
			or a bridge.	solving	
9	MID TEST - I				
10	Analysis and design of abutments	CO-4	Check the adequacy of the	Lecture Problem	
			abutment of the briidge for the given loading	solving	
			given loading		
			Check the safety and stability		
			of the abutment of a bridge.		
11	Analysis and design of pier	CO-4	Check the safety and stability	 Lecture Problem solving 	Assignment
			of the abutment of a bridge.	sorving	
12	Reinforcement detailing and bar bending	CO-4	Sketch the reinforcement	Lecture Problem	
	schedule need to be prepared.		details of all the components of a bridge.	solving	
			Prepare the bar bending		
			schedule of all the components		
			of a bridge.		
13	Bridge bearings: bearings, forces on	CO-4	Explain about the different	Lecture Problem solving	
	bearings, design of elastomeric bearings.		bearings to be used in bridges.	solving	
			Design the elastomeric bearing		
			of a bridge for the given		
14		CO-4	loading	Lecture Problem	
14	Basics for selection of bearings, expansion joints and closed joints.	0-4	Explain about the expansion joints and construction joints of	solving	
	joints and crosed joints.		a bridge.	8	
15		<u> </u>	_		
15	Bridge foundation: types of foundations, well foundation-open well foundation	CO-5	Explain about the different types of foundations,	 Lecture Problem solving 	
	wen foundation-open wen foundation		types of foundations,	solving	
		~~~~			
16	Components of well foundation, Pile	CO-5	Differentiate between the well	Lecture Problem	Assignment
	foundation.		and pile foundation.	solving	
17	Reinforcement detailing and bar bending	CO-5	Sketch the reinforcement	Lecture Problem	
	schedule need to be prepared.		details of the well foundation.	solving	
			Prepare the bar bending		
			schedule of the well foundation		
18	MID TEST - II				
	END EXAM				
L			l		