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Abstract

Low-temperature combustion in diesel engines gained prominence because of their ability to meet the current emission
standards without NOx and PM trade-off. Among the low-temperature combustion concepts, premixed charge compression
ignition (PCCI) offers an in-cylinder emission reduction with minimal to zero engine modifications. This work reviews the
role of premixed charge compression ignition (PCCI) of low-carbon and oxygen-rich fuels on diesel powertrains' perfor-
mance. This review covers the fundamentals and significance of PCCI combustion with low-carbon oxygen-rich fuels of
both renewable and synthetic origins. Various strategies employed for achieving PCCI combustion, in-cylinder, and external
charge preparation are discussed in this review. The effect of a single injection, multiple split injections, injection pressure,
and injection duration on PCCI combustion in diesel engines is discussed at length. Low-temperature combustion depends
on the chemical kinetics of combustion. The present review discusses the numerical works carried out with detailed chemi-
cal kinetics of various conventional and alternative fuels. Challenges in PCCI combustion, such as wall-wetting in early
direct injections, combustion phasing, narrow load range, and engine knock for conventional and unconventional fuels, are
presented. Bottlenecks in the present PCCI technology, advantages of using alternative fuels for PCCI combustion, and the
scope of future work are presented at the end of this review.
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Introduction

The significant issues in the current automobile sector
are emissions, soaring fuel prices, and stringent emission
norms. These issues are challenging to both industry and
researchers around the world. The present transportation
sector requires fuel-efficient engine technologies that
would reduce emissions and satisfy the present and future
energy security requirements. The diesel engines are fuel
efficient compared to gasoline engines but would require
costly after-treatment systems to make them compliant
with emission standards. Incentives and subsidies are
provided to electric vehicles to achieve the goal of clean
transportation. However, due to their limited range, these
measures have not resulted in the expected transformation
of vehicle technology from internal combustion engines
(ICE) to electric vehicles (EVs). [1]. The assessment
of well-to-wheel emissions of BEVs found that green-
house gas GHG emissions from battery electric vehicles
depend on the source of electricity used for charging the
EVs [2-4]. In this scenario, advanced combustion con-
cepts, such as homogeneous charge compression ignition
(HCCI), premixed charge compression ignition (PCCI),
and reactive charge compression ignition (RCCI) are
becoming significant. These combustion concepts can
simultaneously reduce emissions and improve the per-
formance of the engines for conventional and alternative
fuels [5-8]. Among these combustion concepts, PCCI has
the advantage of minimum to zero engine modifications.
PCCI combustion of low-carbon fuels in diesel engines
has much potential to reduce emissions and improve the
PCCI range of operation. So, the present work reviews
significant research on the principles of PCCI Combus-
tion, low-carbon fuels, the effect of fueling and exhaust
gas recirculation (EGR) strategies on PCCI combustion,
challenges, and the scope for PCCI technology in the com-
mercial vehicle fleet.

Fundamentals, methodology and challenges
of PCCl technology

Fundamentals of PCCl technology

In conventional diesel combustion systems, soot formation
occurs at the end of the delay period due to rich combus-
tion. Thermal NOx generates at high-temperature zones
during the mixing-controlled combustion phase [9-11].
In diesel engines, both scenarios frequently result in high
NOx and soot emissions. In-cylinder emission reduction
technologies are employed by many researchers to limit
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NOx and soot emissions, such as retarded injection tim-
ings, high injection pressures, and EGR. Nevertheless,
these methods require costly after-treatment devices such
as selective catalytic reduction (SCR), lean NOx traps, and
particulate filters to meet the current emission standards
[12]. To further reduce the NOx and soot emissions to the
required levels without NOx-soot trade-off, overall com-
bustion temperatures are reduced using low-temperature
combustion (LTC) concepts such as HCCI, PCCI, and
RCCI. All these concepts follow typical combustion paths
which avoid NOx and soot islands on equivalence ratio and
temperature (&-7) maps [13-15] as shown in Fig. 1. It is
possible to reduce NOx and PM emissions to ultra-low lev-
els using HCCI combustion. However, higher heat release
rate because of premixed combustion, decrease in igni-
tion delay with the increase in load, complex combustion
control, and narrow load range are some significant issues
in HCCI combustion [16—19]. Hence, PCCI combustion is
adopted as a more reliable and practicable way of reducing
NOx and PM emissions.

PCCI combustion is a midway between HCCI and con-
ventional combustion. Unlike HCCI combustion, which
often necessities external mixing and very early injections,
PCCI combustion is achieved by employing early injec-
tions, late injections, high fuel injection pressures, and EGR
[20-23]. In early PCCI, combustion occurs before TDC; in
late PCCI, combustion happens after TDC. Even though
both PCCI concepts rely on ignition delay, early PCCI is
more advantageous than late PCCI in controlling emissions
and maintaining high thermal efficiency [24]. Despite its
advantage, PCCI combustion may also increase emissions
due to early injections and a high percentage of EGR at
higher loads. Temperature increases with the increase in
load, and high amounts of EGR (~>30%) are required to
increase the ignition delay at higher loads for sustaining
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Fig.1 &-T maps illustrating low-temperature combustion pathways
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PCCI combustion. This will penalize the engine with a rise
in specific fuel consumption and a drop in thermal efficiency.
Hence, critical control of engine parameters is required to
take full advantage of PCCI combustion [7, 8, 16]. Discus-
sion on various injection strategies, EGR, and combustion
phasing strategies used for sustaining and controlling PCCI
combustion are presented in the below section.

Methodology of PCCl combustion

As discussed in the earlier sections, early single or mul-
tiple split injections coupled with EGR can achieve PCCI
combustion. In this section, various strategies utilized for
early and late PCCI combustion are discussed. In the works
of shim et al.[16], late PCCI combustion is achieved in a
2.0 L Euro V engine using pilot and main double injection
strategy. The pilot injection timings are swept between 11
and 31° before top dead center (BTDC), and main injec-
tion timings are maintained between — 2 and 7° BTDC. To
sustain late PCCI combustion, dwell time between main and
pilot injections is longer with 0-50% EGR. The CO and
HC emissions mainly arise due to very early injection pilot-
main and pilot-main-post-injection strategies. A sweep of
pilot injection timings from TDC to ~70° BTDC revealed
arise in CO and HC emissions earlier than 50° BTDC. To
limit CO and HC emissions, pilot injection timings are main-
tained between 50 and 60° BTDC. Pilot injection quantity
also plays a critical role in forming CO and HC emissions,
so the pilot injection quantity is limited to 20% of the total
fuel injected [10]. In addition to in-cylinder charge prepara-
tion, the premixed charge is prepared by advancing the injec-
tion timing till suction and injecting the fuel into a chamber
with a fuel vaporizer. The premixed charge is fed into the
engine during suction stroke [6]. The efficacy of single and
multiple split injection for premixed combustion is studied
using an optical engine and a metal engine. The injection
timing of — 25° BTDC is maintained for a single injection
with 45% EGR and — 13.6° BTDC with 0% EGR. In the
case of the double injection strategy, the dwell time between
main and pilot injection varies from 5 to 18°, depending on
the EGR ratio. Pilot-pilot-main injection strategy is also uti-
lized for premixed combustion with injection starting from
60° BTDC, and the highest efficiency of 48.5% is observed
[25]. The single injection strategy for achieving PCCI com-
bustion is simple and less complex when compared with
double or triple injection strategies. However, the peak in
unburned species and high-pressure rise rates are of signifi-
cant concern in the single injection strategy. In this regard,
Horibe et al. [26] tested both single and double injection
strategies on a single-cylinder engine. In a single injection
strategy, the injection timings are varied from — 20° after
top dead center (ATDC) to 0° ATDC with different injec-
tion quantities and %EGR. In the double injection strategy,

first injection varies from — 20° ATDC to — 30° ATDC and
second injection varies from — 5 to 5° ATDC along with
EGR. The experiments show that retarding the injection tim-
ing beyond 5° ATDC affects thermal efficiency adversely.
Hence, trade-off is required between the second injection
and peak pressure rise rates. The advancing first injection
is needed for lower smoke emissions, but unburned spe-
cies concentration may peak. Therefore, judicial selection
of operating points such as injection timings, quantities,
and EGR rates are crucial for premixed combustion [5, 10,
26]. Much research was conducted to determine the effect
of EGR on PCCI and advanced combustion concepts [5,
25-28]. PCCI combustion relays much on EGR for increas-
ing ignition delay, combustion phasing, and for decreasing
the heat release rate. Experiments are carried out with and
without EGR for various injection timings to assess its effect
on PCCI combustion. Results indicated that late injections
without EGR performance are better than with EGR. As the
injection timing advanced, % EGR played a crucial role in
improving indicated mean effective pressure (IMEP) and
indicated thermal efficiency [29]. On top of injection tim-
ings, pressures, and duration, spray included angle plays a
crucial role in PCCI IMEP. As previously described, PCCI
combustion requires early injections, resulting in decreased
IMEP if the spray hits the cylinder liner (wall wetting). The
collision of spray in the piston bowl would concentrate all
the mixture and increase IMEP and knocking. Both phe-
nomena are undesirable, and making the spray collide with
the upper piston bowl zone is essential for improved IMEP.
Numerical and experimental studies conducted on the effect
of spray included angle on IMEP by Kim et al.[30] show
that 100° spray included angle has improved performance.
The present section discusses various injection and EGR
strategies employed to realize PCCI combustion. The set of
engine operating points required for successful PCCI com-
bustion collected from literature is given in Table 1. The
various injection strategies utilized for premixed charge
compression ignition and corresponding ranges of injection
timing are shown pictorially in Fig. 2.

The strategies used for PCCI combustion of convention
and low-carbon fuels such as biodiesels, ethanol, metha-
nol, and their blends are reviewed. It is identified from the
research survey that the same strategies which are applied
for conventional fuels can also be used for low-carbon
fuels. However, adding low-carbon fuels such as ethanol to
biodiesel and diesel increases the ignition delay [28]. The
reports say that for PCCI combustion of biodiesels such as
rapeseed oil methyl ester, higher ignition delays are required
owing to their high reactivity [33]. The tests on PCCI com-
bustion of fuels such as biodiesel, dimethyl ether (DME),
alcohols, ethers, and their blends show that injection pres-
sures, EGR, injection timings, injection quantities, and
compression ratios are vital for effective control of PCCI
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Fig. 2 Pictorial representation
of various PCCI combustion
strategies
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Fig.3 Representation of different combustion concepts on pressure
trace [49]

combustion. Some literature also cited injection nozzle
geometries as crucial parameter for premixed combustion
[9, 21, 45]. Specific injection timings for different combus-
tion concepts are represented on a standard pressure trace
and are shown in Fig. 3.

In summary, PCCI combustion is successfully achieved
by many authors with the strategies exhibited in Fig. 2.
Although PCCI combustion effectively reduces NOx and
soot emissions, it is still tricky to engineer premixed com-
bustion at different loads and speeds. The various challenges
in PCCI combustion are discussed in the subsequent section.

Challenges in PCCl combustion

Despite its advantages, PCCI combustion can pose
severe technical challenges regarding combustion
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control, performance loss, and emissions. Various chal-
lenges encountered during PCCI combustion are discussed
in the present section. As a consequence of early injections,
PCCI combustion is prone to higher knocking and combus-
tion noise when compared with conventional baseline com-
bustion [48, 50]. Lower compression ratios are preferred
for PCCI combustion to reduce this combustion noise and
avoid very advanced ignition [23, 42, 51]. This reduction
in compression ratio results in lower efficiencies. Premixed
combustion engines require high EGR rates to prolong the
ignition delay. These high EGR rates are usually 0-60% and
are beneficial for reducing NOx emissions. Nevertheless,
they have determinantal effects on thermal efficiency, fuel
consumption, HC emissions, and soot [16, 48]. Ambrosio
et al.[22] reported a rise in brake-specific fuel consump-
tion when EGR rates are greater than 20%, especially at low
loads. In early injection PCCI, due to premixed combustion,
it is not easy to control the combustion phasing (CA50). To
maintain the combustion phasing, thermal efficiency PCCI
must depend upon high EGR rates (>40%) and optimized
multiple injection strategies. PCCI combustion with 30%
EGR resulted in high HC and CO emissions. High injec-
tion pressures are used in PCCI combustion mode to achieve
better fuel premixing. Higher injection pressures (>1000
bar), along with advanced injection, lead to inferior com-
bustion and knocking [16, 31]. As the fuel is injected into
low pressure and temperature atmosphere, wall-wetting,
higher spray penetration, and low vaporization are encoun-
tered in early injections. The increase in ignition delay in the
case of PCCI combustion generates over lean mixtures and
lower cylinder bulk temperatures. The above factors lead
to lower efficiencies and increased CO and HC emissions
[52-55]. Narrow cone angle injectors are suggested by Chen
et al.[56] to reduce wall wetting hence HC emissions. The
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experimental test shows that the injection advance timing
limit is increased from 30° BTDC to 70° BTDC by using
narrow cone injectors with 60° spray cone angle than con-
ventional injectors with 145° spray cone angle. One more
method suggested to reduce the wall wetting is to inject the
fuel multiple times. These multiple injections would result
in lesser spray penetrations, hence low HC emissions [57].

PCCI combustion has comparable efficiencies with con-
ventional combustion and lower NOx and soot emissions.
Despite these advantages, the operation of PCCI at higher
loads is still challenging. The gain of lower soot and NOx
emission at low loads is lost at higher loads due to increased
temperatures. The rise in equivalence ratios, peak pressure,
and pressure rise rates is the bottlenecks in PCCI com-
bustion. Small quantities of post-injection can reduce the
increase in soot emissions at higher loads (> 10 bar BMEP).
However, post-injections have resulted in a rise in specific
fuel consumption [10, 24]. PCCI combustion is inferior to
conventional combustion in a few accept such as load range,
HC and CO emissions [58]. However, it is still a clean and
highly efficient combustion system with low NOx, soot,
and comparable thermal efficiencies. Fuel properties play
a significant role in extending the load range of PCCI com-
bustion. Fuels with optimum cetane number (~40) and low
distillation temperatures increase the load range to medium
loads for PCCI combustion. Optimized injection strategies,
fuels, narrow-angle injectors, compression ratios, and super-
charging can improve the load range and other problems
associated with PCCI combustion [28, 59-64]. Various

Fig.4 Various challenges and
technical solutions to PCCI
combustion

challenges encountered in PCCI combustion and technical
solutions suggested in the literature are shown in Fig. 4. Fuel
characteristics play a vital role in the performance of a PCCI
combustion. The discussion on various low-carbon and alter-
native fuels utilized for PCCI combustion and advantages of
PCCI combustion are presented in the below sections.

Advantages of PCCl combustion

PCCI combustion offers some key advantages over conven-
tional combustion. The primacy of PCCI combustion over
other emission treatment methods used with conventional
combustion are shown in Table 2.

Alternative fuels for PCCl combustion

Fuel characteristics are essential for any combustion phe-
nomena, and their role becomes increasingly important if
the combustion is kinetics dependent, like PCCI combus-
tion. As discussed in the earlier sections, PCCI combus-
tion necessities longer ignition delays for homogenization
of charge, which requires low cetane fuels. The various fuel
properties necessary for effective PCCI combustion and the
performance of different low-carbon fuels and their blends
on PCCI combustion are discussed in the present section.
The reactivity of the mixture reduces by blending waste
cooked oil biodiesel with diesel. The blends increased PCCI
combustion's ignition delay and efficiency [41, 72]. Ethanol

PCCI Combustion

Challenges

High rate of
pressure rise

Knocking

Rise in CO, HC,
soot emissions

Combustion
phasing

High EGR rates

Limited operating
range

Wall wetting

NSNS EEEERREE,

Compression ratio
adjustments

Narrow cone
angle injectors

Multiple
injections

Supercharging/
turbo charging

Using low
centane fuels

Lowdistillation
temperature fuels

Optimized
parameters

@ Springer



5186

Y. D. Bharadwaz, A. S. Kumari

Table 2 Advantages of PCCI combustion

Emissions treatment method Objective

Limitations with conventional com-
bustion

PCCI advantage

Exhaust gas recirculation [65] Decrease NOx emissions

Retarded injections [66] Decrease NOx emissions

Intake boosting [67, 68] Decrease emissions

Alternative fuels [69] Improve performance

and decrease emissions

After-treatment technologies [70, 71] Reduce emissions

Risk of increase in fuel penalty and
soot emissions

At high loads increases NOx emis-
sions

Fuels like biodiesel increase NOx
emissions

Costly and increases fuel penalty in
some cases

Can decrease soot emission with
minimal fuel penalty

Increase in soot generating precursors Decrease NOx and soot simultane-

ously

Decrease CO, and UHC emissions
along with NOx

Decrease NOx emissions to ultra-low
levels

Decrease the need for after-treatment
methods

is added to diesel and biodiesel to test the blends' adapt-
ability to PCCI combustion. Adding ethanol has improved
oxygen content in the blends and ignition delay times. High
latent heat of ethanol aids in reducing the temperatures,
hence NOx emissions and rich oxygen content of the blends
helped in reducing soot [6, 8, 28]. Diethyl ether blends are
blended with diesel and biodiesel to improve PCCI com-
bustion. The tests indicated a decrease in emissions and
improvement in performance in particular test conditions
[7]. Biodiesel and diesel blends B20 and B40 are tested
with PCCI combustion to explore the adequacy of biodiesel-
diesel blends for premixed combustion. Experiments con-
ducted on biodiesel-diesel blends exhibited better emission
characteristics than diesel [27, 40]. Methanol and iso-octane
are tested with HCCI and partially premixed combustion to
assess their performance. Experiments reported ignition in
fuel-lean zones and lower charge stratification for metha-
nol. Ignitions in fuel-lean zones improved CO emissions,
and lower charge stratification improved the SOI window
resulting in low NOx emissions. Numerical simulations car-
ried out at different conditions indicated better emissions
for methanol in PCCI combustion [47]. Naphtha gasoline,
ethanol, and methanol are tested under partially premixed
combustion to study engine-out soot emissions. From the
test results, Shamun et al. [73] identified that the maximum
limit of soot mass concentrations for methanol is 1.6 mg/m?,
whereas gasoline soot mass concentration never decreased
below 1.6 mg/m>. Oxygenated fuel blends and split injec-
tions strategy have good emissions characteristics in diesel
engines. The study by Choi et al. [74] with esters and ether
blends of diesel noticed a drop in soot emissions, which
is significant in rich conditions and split injections. Bio-
diesels have the inherent ability to reduce soot emissions
because of their soot-inhibiting properties. Low-temperature
combustion requires longer ignition delays for proper mix-
ing, lower equivalence ratios, and low local combustion
temperatures. The high oxygen content of biodiesel aids in
improved smoke-less combustion at lower EGR rates [74,

@ Springer

75]. Spray characterization of diesel ethanol blends during
early injections is carried out by park et al.[76]. The authors
identified a decrease in droplet size, high evaporation, supe-
rior atomization, and longer ignition delay for diesel ethanol
blend sprays than diesel sprays. On top of alcohol fuel, dif-
ferent diesel fuels were tested for PCCI combustion such as
ultra-low sulfur diesel (ULSD), diesel fuel produced from
low-temperature Fischer—Tropsch processes (LTFT), and
renewable diesel (RD) (hydrotreated camelina oil). Results
indicated a drop in gaseous emission for LTFT and RD than
ULSD [42]. Gasoline diesel blends are employed in PCCI
combustion to mitigate the high burning velocities which
result in high combustion noise. Experimental reports indi-
cated a reduction in liquid impingement on cylinder walls
and enhanced air-fuel mixing, hence combustion phasing
for gasoline/ diesel blends [43, 77]. Dimethyl ether (DME)
is tested in PCCI combustion mode and found lower NOx
emissions than conventional combustion. Results reported
lower HC and CO emissions for PCCI combustion than
HCCI combustion [78]

Due to its high cetane number and better combustion
characteristics, DME leads to knocking and combustion
noise in PCCI Combustion. To mitigate this, LPG is added
to DME as an ignition inhibitor to change the premixed fuel
property [79]. The effect of biodiesel on PCCI combustion
using experimental and simulation techniques is investigated
by Hwang et al. [80]. The presence of oxygen species, low
sulfur, aromatic content, and low soot precursors in bio-
diesel is the reasons for low soot emissions for biodiesels.
Numerical simulation conducted for biodiesel and their die-
sel blends for PCCI combustion resulted in lower emissions
for B100 than B20 blend. Numerical results further indi-
cated that the rise in specific fuel consumption for biodiesel
is not mitigated with PCCI combustion. Methyl decanoate
and methyl-9-decanoate are used as surrogate fuels for the
numerical simulation of B100 and B20 fuels for PCCI com-
bustion [81]. Jatropha oil biodiesel diesel blends with petrol
and diesel as secondary fuels are investigated by Sendilvelan
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et al. [82] for PCCI combustion. Methanol and polyoxym-
ethylene dimethyl ether blends are numerically tested for
their effectiveness in PCCI combustion. The increase in the
methanol ratio in the blend resulted in lower NOx and a
rise in CO and HC emissions [83]. The visualization studies
conducted by Hikichi et al.[84] on a PCCI engine showed a
decrease in flame luminosity with methanol injection. The
authors also noticed a delay in flam luminosity and effective
reaction suppression in the case of earlier methanol injec-
tions. In addition to liquid fuels, gaseous fuels are also uti-
lized in PCCI combustion to reduce CO, and NOx emissions
from dual-fuel engines. Promising results in emissions and
brake thermal efficiency are obtained from natural gas diesel
premixed combustion [85]. Fuel reactivity and volatility and
critical parameters for PCCI combustion processes. Experi-
ments conducted with fuels of different volatility and cetane
numbers show that a decrease in cetane number results in
high CO and HC emissions. However, lower cetane number
fuels inhibited improper combustion of early injected fuel.
The rise in fuel volatility resulted in reduced particle con-
centration and fuel consumption [86]. Nine different fuels
with different octane range are tested for premixed combus-
tion. Fuels with octane number less than 70 are found to be
running in the entire load range of the engine including idle
conditions. Emissions such as NOx and soot are found to be
less than EU VI and US 10 regulations [87].

The present section presents various fuels used for PCCI
combustion in the literature. The literature survey identified
that successful PCCI combustion fuel properties and their
composition are vital. Many conventional and alternative
fuels are tested for PCCI combustion to identify the typical
fuel properties that enhance the PCCI type of combustion.
Critical analysis of PCCI combustion of alternative fuels is
carried out, and the advantages and disadvantages of dif-
ferent fuels tested with PCCI combustion are showcased in
Table 3.

PCCI combustion characteristics
Combustion

The previous section discussed various alternative fuels
used with PCCI combustion for possible enhancement in
performance and emission. The present section reviews the
combustion aspects of different conventional and alternative
fuels with PCCI combustion. In this regard, Simescu et al.
[88] carried out premixed combustion with PFI and main
injections. In their work, the authors identified the HCCI
type for the premixed fuel and the diffusion type of com-
bustion for the direct-injected fuel. The increases in the PFI
injection quantity resulted in a higher HCCI (premixed) type
of combustion than diffusion combustion. Two-stage heat

release can be observed in Fig. 5, which is typical of pre-
mixed combustion. Single-stage or two-stage heat releases
are found to be depending on the injection duration. Andre
et al. [88] study on injection duration effects revealed a
single heat release peak for short early injections vis-a-vis.
Increasing injection duration also raised the equivalence
ratios and fuel wall impinging. Ignition delay is one of the
prime factors responsible for PCCI combustions. In the
works of park et al. [36], advancing the injection timing
beyond 30° BTDC made SOC independent of injection tim-
ing. At this stage, SOC is purely dependent on the auto-
ignition chemistry of the mixture. Advancing fuel injection
beyond 30° BTDC, such as 60° BTDC, reported a drop in
heat release rates and retarded combustion phase.

Numerical studies are carried out by Yanzhao et al.[90]
to understand the HCCI and premixed combustion modes.
Their results show that CA50 is independent of SOI tim-
ing in the HCCI mode, and CAS50 strongly depends on SOI
timing in the PCCI combustion mode. Less than 2500 K
temperatures are found at advanced injection timing of — 40°
BTDC with equivalence ratios less than 1. A comparative
analysis is carried out between different LTC strategies, and
it is identified that max. Pressure rise for PCCI is in between
HCCI and RCCI mode of combustion. At lower loads, the
PCCI combustion mode showed nominal heat release rates.
In contrast, PCCI resulted in a significant pressure rise at
higher loading conditions than RCCI and conventional com-
bustion [35].

As discussed earlier, lower cetane number fuels are most
suitable for the PCCI type of combustion. Dijkstra et al. [91]
conducted experiments with blends of cyclohexanone with
diesel fuels to evaluate the effect of cetane number and oxy-
gen content. In their works, authors identified that the rate of
heat release is severely affected by cetane number. Due to the
low cetane number, there is an increase in combustion dura-
tion and a decrease in pressure rise rate. The experiments
with PCCI combustion of diesel-biodiesel blends B20 and
B40 reported an advance in the start of combustion (SOC)
for B40 and retarded SOC for B20. Authors attributed the
advanced SOC for the B40 blend to the domination of bio-
diesel fuel properties in the blend. Adding biodiesel to diesel
has shown a positive effect in decreasing CO and HC emis-
sions in PCCI combustion. Nevertheless, the combustion is
found to be slightly inferior to diesel combustion [40]. B20
and B40 blends are also utilized by Elkelawy et al. for PCCI
DI combustion. In their works, authors noticed a significant
rise in cylinder pressure and advancement in location P_,,.
The increase in premixed ratio resulted in a drastic rise in
pressure, combustion noise and knock [72]. Miller cycle is
applied for PCCI combustion using the late inlet valve clos-
ing technique (LIVC) by Kawano et al.[91]. In their works,
authors identified a rise in ignition delay, leaning of the air-
fuel mixture, and combustion temperatures below 2200 K.
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Fig.5 Premixed combustion phases [89]

A critical review of PCCI combustion characteristics for
conventional and alternative fuels is shown in Table 4.

Performance and emission

Low-temperature combustion techniques' fundamental
objective is to simultaneously reduce harmful NOx and
soot emissions. The LTC techniques, such as PCCI, success-
fully minimize the trade-off relation between NOx and soot.
However, this technique suffers from high CO and HC emis-
sions, a drop in thermal efficiency, and a limited operating
range [13, 107-110]. Many researchers tried to address these
issues in PCCI combustion using multiple injection strat-
egies, high injection pressures, EGR, boost pressure, and
alternative fuels. The techniques applied to reduce the bottle-
necks in PCCI combustion technology are discussed below.
The experiments by Jacobs et al. [111] on premixed combus-
tion showcased the possibility of ultra-low NOx and soot
emissions with PCCI technology. The authors explored the
relationship between combustion temperatures, equivalence
ratios, and soot oxidation and found that soot formations
are independent of equivalence ratios below 1500 K tem-
perature. The authors demonstrated low soot and NOx lev-
els of ~0.03 FSN and 3 ppm under rich conditions. Despite
lower NOx and soot emissions, high HC and CO emissions
are recorded for premixed combustion. To reduce CO, HC
emissions and destruction of thermal efficiency, increased
boost pressure, diesel oxidation catalyst, low compression
ratios, and advanced injection timings are employed. DOC
with premixed combustion effectively reduce CO emissions
next to paraffins, olefins, and aromatics.

Nevertheless, DOC's conversion efficiency is higher than
premixed lean combustion than rich [112—114]. In premixed
combustion, the overall combustion takes place in lean
mode; irrespective of the equivalence ratio, the temperatures
are lower. For facilitating exhaust after-treatment strategies

(like lean NOXx trap), premixed combustion must occur in a
rich mode. However, rich premixed combustion was found
to have deactivated the platinum-based DOC [115]. Detailed
studies are conducted to determine the root cause of HC
emissions in premixed combustion. Numerical and optical
techniques such as homogenous reactor simulations, visual
access engines, and ultraviolet planar laser-induced fluores-
cein (UV PLIF) are utilized for analyzing the HC emission
formation. The studies identified that forming liquid films,
bulk quenching over lean regions, increased charge dilu-
tion, and low loads are the causes of higher HC emissions
in premixed combustion [116-119]. Diesel fuel vaporizers
are developed for external charge preparation in a PCCI
engine and used simultaneously with a toroidal combustion
chamber. The cut section view of the diesel fuel vaporizer is
shown in Fig. 6. The use of diesel fuel vaporizer in conjunc-
tion with toroidal combustion chamber resulted in a decrease
in CO and HC emissions with a marginal increment of NOx
emissions and a 5.31% rise in BTE. The authors concluded
that using a toroidal combustion chamber with fuel vapor
induction would reduce the drop in BTE [120].

Due to increased HC and CO emissions for conventional
mineral diesel, researchers have started identifying more
EGR-tolerant and ignition-resistant fuels. In this scenario,
many alternatives are tested for their efficacy in PCCI com-
bustion. The effect of fuel properties on premixed combus-
tion is investigated with fifteen different fuels, such as diesel,
biodiesels, n-heptane-iso-octane mixtures, and n-cetane-
HMN mixtures. Biodiesel blends such as soybean methyl
esters and palm oil methyl esters have reduced UHC and
CO emissions in premixed combustion mode. The drop in
UHC and CO emissions is attributed to the shorter burn
durations of biodiesels. The tests conducted with other fuels
to determine the effect of ignition quality and volatility on
CO and HC emissions proved that fuel volatility has lit-
tle to no impact on UHC and CO emissions [121]. Fuels
such as diesel are mixed with high octane fuels to avoid the
adverse effects of using high cetane fuels in PCCI combus-
tion. The research on diesel-gasoline blends shows that they
are efficient in increasing ignition delay, operating range,
and reducing emissions. A reduction in pressure rise rate
is also observed with the increase in gasoline blends. This
decrease in pressure rise rate at higher loads would eventu-
ally reduce combustion noise and knock. Further studies are
conducted to determine the effect of fuel octane on premixed
combustion. The use of gasoline-diesel blends in the RON
range of 75~85 indicated lower smoke and NOx emissions
than diesel. However, high-octane fuels have difficulties at
partial loads and high EGR conditions [122-124]. Calo-
phyllum inophyllum B20 blend is tested in diesel engines
with low-temperature combustion for a possible reduction in
emissions. Results indicated a drop in CO and HC emission
compared with diesel and a rise in brake thermal efficiency.
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Fig.6 Cut-section view of diesel fuel vaporizer [120]

Authors identified that 15% pilot injection quantity and 10%
EGR are best for lower engine out emissions and better per-
formance [125]. The works conducted by Tormos et al.[126]
quantifying the biodiesel combustion behavior also revealed
faster combustion durations, lower exhaust gas temperatures,
and CO and HC emissions for biodiesels. Soy-based bio-
diesel B50 is studied under two low-temperature combus-
tion modes, early and later injection strategies. Biodiesel for
LTC combustion reported decreased elemental carbon (EC)
and HC emissions. However, higher particulate emissions
are noticed for biodiesel LTC combustion [127]. Premixed
combustion used various soy-based biodiesel blends such
as B100, B20, and B50. The HC emissions are lower for
B100 when compared with diesel, and smoke emissions
(FSN) values are decreasing with an increase in biodiesel
concentrations in the blend. Nevertheless, the particle size
distribution increased with biodiesel content [128]. Fuel
reactivity plays a significant role in PCCI combustion. Opti-
mum combustion delay yields good results at a particular
load and compression ratio. Low reactive fuels with lower
emissions, even in conventional combustion, are required
for PCCI combustion. For PCCI combustion, some alcohols
and cyclic oxygenates are promising alternatives [129]. Fuel
oxygen mass fraction varies from 0 to 15%, and their emis-
sion behavior is studied in a diesel engine. Oxygen content
and prolonged ignition delays with EGR resulted in low PM
emissions [130].

High oxygen content fuels such as polyoxymethylene
dimethyl ether (PODE) and methanol blends are investigated
with PCCI combustions. The high methanol content in the
blends increased premixed combustion and decreased NOx
and soot trade-off. PCCI combustion with optimum metha-
nol ratio and pilot injection strategy resulted in the highest
brake thermal efficiency of 46.58% [131]. Methanol content
and pilot injection timings are studied in a dual-fuel engine.
With the increase in methanol content in the blend, there is
an improvement in HC emissions, brake thermal efficiency,
and COV [132]. In addition to methanol diesel blends, etha-
nol diesel blends are investigated with PCCI combustion.
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Fig. 7 Effect of natural gas substation and injection timing on indi-
cated thermal efficiency [136]

Results indicated improved brake thermal efficiency and
decreased NOx emission compared to diesel PCCI. How-
ever, the rise in CO and HC emissions is reported for the
increase in ethanol content in the blend [133]. N-butanol,
often considered the next generation biofuel, is tested in
the premixed combustion mode. Results indicated compa-
rable efficiencies with diesel and a considerable reduction
in NOx and smoke emissions. The high CO and HC emis-
sions of n-butanol are expected to decrease at higher loads
with higher flame temperatures. The split injection strategy
reduces the high-pressure rise and combustion noise with
the rapid burning of n-butanol[134]. Different gasoline-
like fuels are investigated in premixed combustion mode,
and their performance is compared with diesel. At low load
conditions, NOx and smoke are reduced without applying
EGR. At higher loads and rpm, gasoline fuels resulted in
better NOx and smoke than diesel by using sufficient EGR.
However, the high CO and HC emissions from gasoline-like
fuels require after-treatment and multiple injection strategies
[135]. The effect of natural gas and diesel in premixed com-
bustion is investigated by Park et al.[136]. The results indi-
cate that the natural gas substitution ratio increase indicated
thermal efficiency, THC, and CO emissions, as shown in
Fig. 7. However, the natural gas substitution ratio increased
and decreased NOx and smoke emissions below Euro VI
limits. Experimental results further indicated that using 50%
EGR CO and HC emissions reduced and increased indicated
thermal efficiency. The effects of PCCI combustion on after-
treatment devices such as lean NOx traps (LNT), diesel oxi-
dation catalyst (DOC), and diesel particulate filter (DPF)
are experimentally studied. LNT is benefited from PCCI
combustion as NOx emissions are lower. At the low load
operating range of PCCI, low light-off temperatures prevail,
and DOC efficiencies are lower. Because of the lower PM
emissions from the PCCI engines, low desoot events are
required, which reduces the fuel penalty [137]. The literature
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reviewed concludes that using biodiesels, alcohols, and their
blends with diesel efficiently mitigate the adverse effects of
PCCI combustion. The critical analysis of literature show-
casing the effects of various fuels with premixed combustion
is presented in Table 5.

Numerical simulations of PCCl combustion

The above sections discussed the effects of various conven-
tional and alternative fuels' premixed combustion on diesel
engines' performance and emissions. As discussed in the
previous sections, PCCI combustion produces ultra-low
NOx and smoke emissions, whereas CO and HC emissions
increased dramatically. The critical restrictions for PCCI
combustion are the lack of control over parameters such as
CO, HC emissions, combustion phasing, and combustion
noise. Numerical studies are conducted to study the root
causes and develop possible solutions to the issues in pre-
mixed combustion. The cardinal works regarding numeri-
cal simulations of PCCI combustion are reviewed and pre-
sented in this section. Complete cycle CFD simulations are
carried out to determine a clean combustion window for
PCCI operation carried out by Ming et al. [171]. From the
CFD analysis, contours of various engine performance and
emissions parameters are obtained as SOI and IVC timing
functions. As shown in Fig. 8, retarded IVC timing created
a wider start of injection (SOI) range for clean PCCI com-
bustion. The computational mesh used for the simulation
is shown in Fig. 9. The rise in CO and HC emissions is
mitigated in PCCI combustion owing to biodiesels' 11% oxy-
gen percent. The effect of biodiesel with PCCI combustion
is numerically investigated using KIVA-3 V coupled with
CHEMKIN. Methyl 9-decanoate is used as surrogate fuel for
representing the behavior of biodiesel. The proposed multi-
component biodiesel mechanism consists of 71 species and
192 reactions. Three-dimensional numerical analysis is car-
ried out for optimizing PCCI operating parameters using
the mechanism. SOI of 30° BTDC is the optimum setting
for reducing NOx, THC, and CO emissions with a slight
penalty of thermal efficiency. High spray tip penetration is
observed for B100 compared to BO. Despite higher spray
tip penetration leading to high THC for B100, a compensat-
ing rise of oxidation in expansion stroke is observed in the
simulations [172]. To accurately capture biodiesel's effect
in low-temperature combustion, effective reaction mecha-
nisms with a minimum number of species and reactions
are required to reduce the computation cost. In this aspect,
tri-component biodiesel surrogates consisting of methyl
decanoate, methyl 9-decanoate, n-heptane and methyl
decanoate, methyl 5-decanoate, and n-decane are used. In
the above fuel, surrogate methyl decanoates represent satu-
rated and unsaturated biodiesel, whereas n-decane is used
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to match the biodiesel's energy content. The developed bio-
diesel mechanism contains ~60-70 species and ~170 reac-
tions. The skeletal mechanism thus developed is validated
with low temperature combustion mode.

A good agreement with experimental results is observed
for neat biodiesel and blends [173, 174]. The computational
studies conducted for mixtures of n-heptane, iso-octane, tol-
uene, and ethanol resulted in improved operating range. Low
octane fuels exhibited improved performance characteristic
[175]. Sector simulations are carried out by many research-
ers instead of full cycle simulations to reduce computational
costs. Sector simulations investigate soy-based biodiesel and
its diesel blend (B20) for low-temperature combustion. The
numerical parametric studies indicated injection timings of
34-28° BTDC are optimum for biodiesel diesel blends. The
results further proved that using biodiesel surrogate blend
models predicted biodiesel fuel behavior precisely in multi-
dimensional engine simulations [176, 177]. The effect of
swirl ratio and split injection strategies on biodiesel PCCI
combustion is investigated by Zehni et al. [178]. Results
indicated a good agreement between experimental and simu-
lated cylinder pressures and heat release rates. Numerical
results indicated that increased swirl ratio with split injec-
tion had adverse effects on PCCI combustion. Advanced
injection timings provided better performance and emis-
sion results for both single and multiple injections, and an
SOI of 35° is considered a sweet spot value for both injec-
tion strategies. A single injection strategy is better at high
swirl ratios than a split injection strategy. The fuel droplet
distribution at a swirl ratio of 1.1 for both single and main
injection at SOI of 40° BTDC. A detailed chemical kinetic
investigation on the effects of oxygenated fuel blends is
carried out by Curran et al. [179]. In their works, authors
studied various fuels such as methanol, ethanol, dimethyl
ether, dimethoxymethane, and methyl butanoate as oxygen-
ated fuel additives. From the chemical kinetic model, analy-
sis authors noticed that adding oxygen additives to diesel
fuel would increase the carbon atoms bonded to oxygen.
These oxygen-bonded carbon atoms are found to provide
zero soot precursors. The results further indicated that with
the increase in fuel oxygen content to 30-40%, soot precur-
sors would reduce to almost zero. Diesel PCCI combustion
numerical simulations are carried out to determine the split
injection strategy's effect and optimize the engine param-
eters for efficient PCCI combustion. Results indicated that
second injection timing and the fuel velocity at the injector
affect the combustion process. In other work, the effect of
boost pressure, EGR rate, premixed fuel fraction, and late
injection timings on engine emissions and performance is
numerically investigated. Sweeps of the above parameters
are carried out using multi-dimensional CFD analysis, and a
multi-objective genetic algorithm is used for optimizing the
above-said parameters. The numerical models successfully
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Fig. 8 Effect of SOI and IVC timing on PCCI combustion [171]

Fig.9 Computational Mesh [171]

predict the PCCI combustion, and Pareto analysis for vari-
ous objectives is carried out. Out of this peak pressure rise
rate of 4.3 bar/deg., 54% EGR, IVC pressure 1.74 bar, 36%
premixing, and late injection timing of 2.9 deg. ATDC are
found to be optimum inputs [180, 181]. New spray models
are developed to improve the accuracy of the low-tempera-
ture combustion simulations.

The proposed model reduced the dependency of the
results on the size of the gas phase cell and predicted the
relative velocity between the droplet and gas. The simula-
tion's radius of influence is set with a collision radius of
2 mm. Peculiar CO emission behavior is observed while
injection timing sweeps at high EGR conditions. This par-
ticular injection timing is termed “sweet spots.” The phe-
nomenological spray model is implemented in KIVA—3 V
code for characterizing the emission behaviors of CO at high
dilute conditions. The model successfully predicts the sweet
spot behavior in LTC Conditions [182, 183]. CFD studies are
conducted to simulate diesel-methanol dual-fuel combustion
under low-temperature combustion with high percent energy
substitution. The sweeps of injection timings are simulated
and found that at high methane lean premixed mixture,

methanol cannot be able to sustain combustion resulting in
high HC and CO emissions [184]. Numerical simulations
are carried out using CONVERGE CFD software for diesel
methane dual-fuel combustion to address the issues such as
low thermal efficiency and high HC and CO emissions. Sim-
ulations are conducted by varying the injection timings and
pilot mass amounts (15%, 30% & 45%). Advancing the pilot
injection timings decreased methane slip, CO, and HC emis-
sions, whereas advancing the pilot timing beyond 24° BTDC
increased CO and HC emissions [185, 186]. The effect of
ultra-high exhaust gas recirculation and modulated kinetics
on low-temperature combustion is investigated numerically
through KIVA-CMC. Results indicated a simultaneous NOx
and PM emission reduction in both LTC modes. Tempera-
ture is the most critical parameter in reducing NOx emission
in high EGR LTC mode. In contrast, the ignition delay is
the critical parameter in reducing CO and PM emissions in
MK mode [187].

A stochastic reactor model is utilized for numerical analy-
sis of the PCCI engine instead of directly coupling chemical
kinetics to CFD. This stochastic approach reduced the com-
putational costs and improved the emission prediction capa-
bilities. The numerical results from the model indicated that
fuel-rich pockets in late injections are desirable for autoigni-
tion and advanced combustion phasing. The results proved
that piston bowl geometry influences in-cylinder mixing
and pollutant formation [188]. Dual-fuel low-temperature
combustion is analyzed using CFD with various fuels such
as diesel-methane and diesel-natural gas. Computational
results indicated that higher rail pressure and swirl ratio
reduce CO and HC emissions to a larger extent with a pen-
alty of NOx emissions. The computational studies further
revealed that the results are susceptible to the component
rate in diesel surrogates, injected mass, and velocity. The
numerical works further proved that the multi-dimensional
modeling of the engine is accurate for predicting dual-fuel
combustion [189-192]. A phenomenological two-zone
model is computationally faster than the multi-zone model.
Results indicated that the proposed model is faster than the
multi-zone model and can predict the combustion trajecto-
ries and the effect of oxygen concentration on lean combus-
tion [193]. A simple schematic of the two-zone combustion
model and 2D ®-T map with combustion trajectory pre-
dicted by the model is shown in Fig. 10a, b.

Numerical studies are further conducted to determine
the effect of injection timings, injection angles, and fuel
concentration distribution in the cylinder. Optimum injec-
tion angles are predicted from the simulations, which
reduced wall wetting and improved the homogeneity of
the mixture. The results also showcased that retarding the
injection timing resulted in a more premixed combustion
fraction decreasing NOx and PM emissions [194-196].
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Fig.10 a Two-zone phenomenological model, b Model predicted combustion trajectories in 2D ®-T map; Red: conventional combustion;
Green: High dilution combustion; Pink: High energy efficient clean combustion [193]. (Color figure online)

The effects of ethanol premixed combustion with a dual
injection strategy are numerically investigated using
CONVERGE. Results indicated that the first injection
could not be used for combustion control, whereas the
second injection provided better control over combus-
tion phasing. The simulation shows that ethanol premixed
combustion showed allowable heat release rates due to
the thermal stratification acquired due to fuel injections
[197]. The direct injection effect of Diesel/ Methanol/
Diesel and Methanol/Diesel/Methanol injection modes
are numerically studied. A premixed type of combus-
tion is observed in all three modes of injection. Results
showed decreased EISFC, soot, THC, and CO emission
for the M/D/M injection mode due to higher amounts of
first methanol injection [198]. The effect of late IVC is
investigated numerically and found that turbulent kinetic
energy and in-cylinder swirl ratio are greatly affected by
engine speed. Late IVC decreased effective compression
ratio and increased ignition delay at wide operating ranges
of the engine. Retarding IVC from 220 to 280 degrees,
resulted in a 50% drop in NOx and smoke emissions [199].
Two-dimensional numerical simulations are carried out
using n-heptane/ air in PCCI combustion mode. The effect
of charge and temperature stratification on PCCI combus-
tion with detailed chemical kinetics is investigated. Results
indicated that ignition delay is hugely affected by charge,
temperature stratifications, equivalence ratio, and tempera-
ture gradient. Increased equivalence ratio has little effect
on LTHR, whereas an increase in overall temperature gra-
dient advances HTHR and decreases peak [200]. From the
above review, it can be concluded that CFD simulations
are good at capturing the combustion and emission phe-
nomena in PCCI Combustion.
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Conclusions

The authors conduct a detailed literature survey on premixed
charge compression ignition engines fueled with conven-
tional and alternative fuels. The present review showcased
the fundamentals, development, and practical challenges in
PCCI combustion. The critical conclusions from this study
are presented below:

1. Premixed charge compression ignition combustion is a
potential and reliable option for in-cylinder reduction in
engine-out emissions.

2. Various issues such as high CO and HC emissions, the
requirement for high EGR, combustion phasing, limited
operating range, knocking, combustion noise, and high
rate of pressure rise are noticed in PCCI combustion by
many researchers.

3. The use of narrow cone angle injectors, split injection
strategies, alternative fuels, adjustments in compression
ratio, and optimized parameters have improved the PCCI
combustion characteristics.

4. Alternative fuels and their blends, such as biodiesels,
alcohols, and natural gas, are effective in reducing emis-
sions and improving performance with PCCI combus-
tion in diesel engines.

5. The numerical simulations of PCCI combustion proved
that optimized injection strategies, injection angles, and
correct fuel mixtures would reduce emissions. Numeri-
cal results further indicated a decrease in soot precursors
with oxygenated fuel blends.

From this review, it is identified that PCCI combustion
is a better option for in-cylinder control of emissions. The
shortcomings of PCCI technology can be overcome with
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suitable fuels and stringent engine parameter control, as seen
in the present review. To summarize, PCCI combustion is an
efficient low-temperature combustion technology to achieve
future emission regulations with fuel flexibility by which
energy security can be achieved.
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