34

GVPCE(A)M.Tech. Structural Engineering2014

THEORY AND DESIGN OF PLATES AND SHELLS

Course Code: 13CE2213

LPC

.

4 0 3

Course Outcomes:

At the end of the course, the student will be able to:

- CO1: Analyse isotropic rectangular and circular plates with different boundary conditions.
- CO2: Analyse the orthotropic plate using energy methods.
- CO3: Analyse the plates resting on elastic foundations.
- CO4: Analyse and design shell structures
- CO5 : Analyse and design folded plates.

UNIT – I

Plate equation in Cartesian and polar co-ordinates for Isotropic plates, Analysis of rectangular and circular plates with different boundary conditions and loadings.

UNIT – II

Energy methods in Analysis of plates - Orthotropic plates

UNIT – III

Plates on elastic foundation.

UNIT – IV

Classification of shells - Membrane and bending theory for singly curved and doubly curved shells - Various approximations Design of cylindrical shells, hyperbolic paraboloidal shells, conoids

$\mathbf{UNIT} - \mathbf{V}$

Analysis of folded plates - Design of diaphragms

TEXT BOOKS

- 1. Timoshenko, S. and Wernewsky, "*Theory of plates and shells*", 2nd Edition, Kriegar, 1961.
- 2. Ramaswamy, G.S., "Design and Construction of Shells",1st Edition, Mc Graw Hill, 1999.

REFERENCES

1. Flugge, W., "Stresses in shells", 2nd Edition, Springer, 2000.

- 2. Varghee P.C., "Design of Reinforced Concrete shells and folded plates, 1st Edition, PHI Publishers, November, 2011.
- 3.Bandgopadhayag J.N. "*Tier shall Structures*", *classical and modern analysis*", 1st Edition, New age International (P) Ltd., reprint 2008. *******

35

GVPCE(A)	M.Tech. Structural Engineering	20	14
BRIDGE ENGINEERING			
(Elective – II)			
Course Code: 13CE 2214	4 L	P	С
	4	0	3

Course Outcomes:

At the end of the course, the student will be able to:

- CO1: Discuss the IRC standard live loads and design the deck slab type bridges
- CO2 : Analyse the box culverts for the given loading and detail the box culverts.
- CO3: Design and detail of T-Beam bridges.
- CO4: Design and check the stability of piers and abutments
- CO5: Discuss the bridge foundations and prepare the bar bending schedule.

UNIT-I

GENERAL CONSIDERATIONS FOR ROAD BRIDGES: Introduction – Site selection – Soil exploration for site – Selection of bridge type – Economical span – Number of spans – Determination of HFL – General arrangement drawing.

STANDARD SPECIFICATIONS FOR ROAD BRIDGES:

Width of carriageway- Clearances- Loads to be considered- Dead load – I.R.C. standard live loads- Impact effect- Review of I.R.C. loadings-Application of live loads on deck slabs – Wind load – Longitudinal forces- Centrifugal forces- Horizontal forces due to water currents – Buoyancy effect- Earth pressure.

UNIT-II