- 1. Timoshenko, S. and Wernewsky, "*Theory of plates and shells*", 2nd Edition, Kriegar, 1961.
- 2. Ramaswamy, G.S., "Design and Construction of Shells",1st Edition, Mc Graw Hill, 1999.

REFERENCES

1. Flugge, W., "Stresses in shells", 2nd Edition, Springer, 2000.

- 2. Varghee P.C., "Design of Reinforced Concrete shells and folded plates, 1st Edition, PHI Publishers, November, 2011.
- 3.Bandgopadhayag J.N. "*Tier shall Structures*", *classical and modern analysis*", 1st Edition, New age International (P) Ltd., reprint 2008. *******

35

GVPCE(A)	M.Tech. Structural Engineering	20	14	
BRIDGE ENGINEERING				
(Elective – II)				
Course Code: 13CE 2214	4 L	Р	С	
	4	0	3	

Course Outcomes:

At the end of the course, the student will be able to:

- CO1: Discuss the IRC standard live loads and design the deck slab type bridges
- CO2 : Analyse the box culverts for the given loading and detail the box culverts.
- CO3: Design and detail of T-Beam bridges.
- CO4: Design and check the stability of piers and abutments
- CO5: Discuss the bridge foundations and prepare the bar bending schedule.

UNIT-I

GENERAL CONSIDERATIONS FOR ROAD BRIDGES: Introduction – Site selection – Soil exploration for site – Selection of bridge type – Economical span – Number of spans – Determination of HFL – General arrangement drawing.

STANDARD SPECIFICATIONS FOR ROAD BRIDGES:

Width of carriageway- Clearances- Loads to be considered- Dead load – I.R.C. standard live loads- Impact effect- Review of I.R.C. loadings-Application of live loads on deck slabs – Wind load – Longitudinal forces- Centrifugal forces- Horizontal forces due to water currents – Buoyancy effect- Earth pressure.

UNIT-II

CULVERTS: Introduction, Analysis and design of box culverts- slab culverts – pipe culverts- Reinforcement detailing and bar bending schedule need to be prepared.

UNIT-III

REINFORCED CONCRETE T-BEAM BRIDGES: Introduction – Analysis and Design of T – Beam Girder bridges- Reinforcement detailing and bar bending schedule need to be prepared.

GVPCE(A)

M.Tech. Structural Engineering **2**

2014

UNIT-IV

DESIGN OF SUBSTRUCTURE: Analysis and Design of abutments and pier- Reinforcement detailing and bar bending schedule need to be prepared.

36

BRIDGE BEARINGS: Bearings, forces on bearings, design of elastomeric bearings, basics for selection of bearings, expansion joints, and closed joints.

UNIT-V

BRIDGE FOUNDATIONS: Types of foundations, well foundation – open well foundation, components of well foundation – pile foundations (designs not included) - Reinforcement detailing and bar bending schedule need to be prepared.

TEXT BOOKS

- 1. Johnson victor D, "Essentials of Bridge Engineering", 7th edition, Oxford, IBH Publishing Co., Ltd., 2006.
- 2. Ponnu Swamy, "Bridge Engineering", 4th edition, Mc Graw-Hill Publication, 2008.

REFERENCES

- 1. Vazirani, Ratvani & Aswani, "Design of Concrete Bridges", 5th edition, Khanna Publishers, 2006.
- 2. Jagadish T.R. & M.A. Jayaram, "Design of Bridge Structures", 2nd edition, 2009.
- 3. Swami Saran, "Analysis and Design of sub-structures", 2nd edition, Oxford IBH Publishing co ltd., 2006.
 - 4. Krishnam Raju N., "Design of Bridges", 4th edition, Oxford and IBH Publishing Co., Ltd., 2008.

37

GVPCE(A)	M.Tech. Structural Engineering	201	14		
PORTS AND HARBOUR STRUCTURES					
(Elective – II)					
Course Code: 13CE2	115 L	Р	С		
	4	0	3		

Course Outcomes:

At the end of the course, the student will be able to:

- CO1: Explain the significance of port and harbours as a mode of transport
- CO2: Demonstrate the fundamental principles of wave hydrodynamics and port cargo handling.
- CO3 : Demonstrate the basic design of port layout
- CO4: Design, plan and integrate port and harbour infrastructure.
- CO5: Explain the construction, maintenance and renovation aspects of ports and inland waterways

UNIT-I

Introduction: Ports and harbours – an infrastructure layer between two transport media, planning of ports and harbours.

The fundamentals: Waves, Tide and current conditions inside harbour, water circulation; breakwaters, jetties and quay walls; mooring, berthing and ship motion inside the port; model studies, physical and mathematical studies.

UNIT-II

Design Issues: Sea port layout with regards to (1) wave action (2) siltation (3) navigability berthing facilities.