NEURAL NETWORKS (ELECTIVE-II)

Course Code: 13IT2115 LPC 4 0 3

Course Outcomes:

At the end of the course, a student will be able to

CO 1: Identify Neural Network Models and their characteristics.

Discuss Neural Network pattern recognition tasks. CO 2:

CO 3: Describe feed-forward and feedback Neural Networks.

Analyze feed-forward and feedback Neural Networks. CO 4:

CO 5: Discuss the applications of Artificial Neural Networks.

UNIT-I

Basics of artificial neural networks: Characteristics of neural networks, Historical development of neural network, artificial neural networks: terminology, models of neurons, topology, basic learning laws.

Activation and synaptic dynamics: Activation Dynamics models, **Dynamics** models, learning methods, Synaptic stability and convergence, recall in neural networks.

UNIT-II

Functional units of ANN for pattern recognition tasks: Pattern Recognition Problems, basic functional units, Pattern Recognition tasks by the functional units

UNIT-III

Feed forward neural networks: Analysis of pattern association networks, Analysis of pattern classification networks, Analysis of pattern mapping networks.

Feedback neural networks: Analysis of linear auto associative FF Networks, Analysis of pattern storage networks, Stochastic Networks and Simulated Annealing, Boltzmann Machine.

UNIT-IV

Competitive learning neural networks: Components of competitive learning networks, analysis of feedback layer for different output functions, analysis of pattern clustering networks, analysis of feature mapping networks

UNIT-V

Architectures for complex pattern recognition tasks: Associative memory, pattern mapping, stability-plasticity dilemma: ART, Temporal patterns, Pattern Variability: Neocognition

Applications of ANN: Direct Applications, Application Area.

Text books:

1. B. Yegnanarayana, Artificial Neural Networks, 1st Edition, Prentice Hall, 2009

References:

- 1. Satish Kumar, Neural Networks A Classroom Approach, 2nd Edition, Tata McGraw-Hill, 2004.
- 2. C.M.Bishop, Pattern Recognition and Machine Learning, 1st Edition, Springer, 2006.

Web reference:

www.nd.com/nnreference.html