ENGINEERING MECHANICS

Course Code: 22ME1103

L T P C 3 0 0 3

Course Outcomes: At the end of the course, the student will be able to

CO1: explain free body diagrams and analyze forces and couples in mechanical systems. **CO2:** analyze ideal trusses and analyze mechanical systems with friction

CO3: determine the center of gravity and moment of inertia for various geometric shapes **CO4:** analyze motion of bodies from the kinematics perspective

CO5: apply Newton's laws and principles of energy and momentum to dynamic systems

UNIT- I 10 Lectures

Introduction to Mechanics: principle of transmissibility, composition and resolution of forces, parallelogram law, triangle law, types of force systems - concurrent coplanar forces, resultant of coplanar force system, moment of a force, couple, Varignon's theorem, Free Body Diagrams.

Learning Outcomes: At the end of this unit, the student will be able to

- 1. analyze forces and moments in mechanical systems (L4)
- 2. describe moments and forces (L2)
- 3. illustrate force system on a body with the help of free body diagram (L3)

UNIT- II 11 Lectures

Trusses: Introduction to plane trusses, analysis of plane trusses by method of joints and method of sections. Virtual work, simple applications.

Friction: Laws of friction, types of friction, equilibrium of force systems involving frictional forces, wedge friction, free body diagrams involving frictional forces.

Learning Outcomes: At the end of this unit, the student will be able to

- 1. calculate forces in links of plane trusses by method of joints (L3)
- 2. determine forces in links of plane trusses by method of sections (L3)
- 3. analyze frictional forces of bodies in a plane (L4)

UNIT- III 9 Lectures

Center of gravity: Centroid and center of gravity, derivation of centroids from the first moment of area, centroids of composite sections, center of gravity of simple volumes - cylinder, cone, sphere, theorems of Pappus-Guldinus.

Moment of Inertia: Area moment of inertia of plane and composite shapes, parallel axis theorem, perpendicular axis theorem, radius of gyration, polar moment of inertia, mass moment of inertia of simple volumes -thin plate, thin rod, cylinder, cone, sphere, rectangular prism.

Learning Outcomes: At the end of this unit, the student will be able to

- 1. determine the centroid of composite sections (L3)
- 2. determine center of gravity of simple solids (L3)
- 3. calculate area and mass moment of inertia for composite areas and volumes respectively (L3)

UNIT- IV 9 Lectures

Kinematics : Rectilinear and curvilinear motion, use of rectangular coordinates, tangential and normal coordinates, radius of curvature, kinematics of rigid bodies, rotation of a rigid body about a fixed axis.

Learning Outcomes: At the end of this unit, the student will be able to

- 1. calculate velocity and acceleration in rectilinear and curvilinear translation (L3)
- 2. determine the magnitude of the velocity and acceleration of rigid bodies (L3)
- 3. calculate velocity and acceleration in rotation (L3)

UNIT- V 9 Lectures

Kinetics: Principles of dynamics - Newton's Laws of motion, D'Alembert's principle, principle of work and energy.

Ideal Systems: Principle of conservation of energy, concept of power, conservation of linear and angular momentum, principle of momentum and impulse.

Learning Outcomes: At the end of this unit, the student will be able to

- 1. apply D'Alembert's principle to convert a problem of dynamics to statics (L3)
- 2. apply principle of work and energy to dynamic systems. (L3)
- 3. calculate motion characteristics of bodies using the principle of momentum and impulse (L3)

Text Books:

- 1. N H Dubey, *Engineering Mechanics: Statics and Dynamics*, McGraw Hill Education (India) Pvt. Ltd., 2014.
- 2. S Timoshenko, DH Young, Sukumar Pati, JV Rao, *Engineering Mechanics (in SI units)*, 5th Edition, McGraw-Hill, 2013.

Reference Books:

- 1. Basudeb Bhattacharya., Engineering Mechanics, 2nd Edition, Oxford University Press (India), 2015.
- 2. Hibbeler RC, Engineering Mechanics: Statics and dynamics, 14th Edition, Pearson Education, 2016.
- 3. Irving Shames, GKM Rao, Engineering Mechanics: Statics and Dynamics, 4th Edition, Pearson, 2009.