SCHEME OF COURSE WORK (R-2022)

Course Details:

Course Title	Design Thinking and Innovation								
Course Code	: 22ME11D1	L	T	P	C	: 0	0	3	1.5
Program:	: B. Tech.	•							
Specialization:	Mechanical Engineering (Robotics)								
Semester	IV								
Faculty Name	: Dr Sanjay K Darvekar, Associate Professor								
Designation									

Course Outcomes (COs): At the end of the course, the student will be able to

CO-1	Outline a problem, apply methods of Empathy on user groups (L2)
CO-2	Describe and define the problem specific to the user group (L2)
CO-3	Apply ideation tools to generate Ideas to solve the problem (L3)
CO-4	Develop prototypes (L4)
CO-5	Test the ideas and demonstrate Storytelling ability to present the Ideas (L4)

Program Outcomes (POs): A graduate of mechanical engineering will be able to

PO-1	Apply the knowledge of mathematics, science, engineering fundamentals to solve complex mechanical engineering problems including robotics applications.
PO-2	Attain the capability to identify, formulate and analyze problems related to mechanical and robotics engineering.
PO-3	Design solutions for mechanical and robotics system components and processes that meet the specified needs with appropriate consideration for public health and safety.
PO-4	Perform analysis, conduct experiments and interpret data by using research methods such as design of experiments to synthesize the information and to provide valid conclusion.
PO-5	Select and apply appropriate techniques and modern engineering software tools including prediction and modeling to complex mechanical and robotics systems.
PO-6	Carry out their professional practice in mechanical engineering in particular robotics area by appropriately considering the issues related to society.
PO-7	Understand the impact of the professional engineering solutions on environmental safety and legal issues.
PO-8	Transform into responsible citizens by resorting to professional ethics and norms of the engineering practice.

PO-9	Function effectively in individual capacity as well as a member in diverse teams and in multidisciplinary streams.
PO-10	Communicate fluently with the engineering community and society; prepare reports; and make presentations effectively.
PO-11	Apply knowledge of the engineering and management principles to deal with projects and their finance in multidisciplinary environments.
PO-12	Engage themselves in independent and life-long learning for continuing professional practice in their specialized areas of mechanical and robotics engineering.

Course Outcome Vs Program Outcomes:

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO-1	3	2				S						
CO-2	2	3										
CO-3	3		2									2
CO-4	3		3		2							
CO-5	3			3								2

1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), Blank: No Correlation

Program Specific Objectives (PSOs):

The student must attain the knowledge and skills to

PSO-1	Design, analyze and develop mechanical and robotic systems that are cost effective and environment
	friendly using advanced tools and techniques.
PSO-2	Model, program and control safe and productive automation systems using various software tools and algorithms.
PSO-3	Apply domain knowledge of mechanical and robotics to provide solutions in interdisciplinary areas to meet current industrial and societal challenges.

Course Outcome Vs Program Specific Outcomes:

COs	PSO1	PSO2	PSO3
CO-1	3		
CO-2	3		
CO-3	3		
CO-4	3		
CO-5	3		

Teaching-Learning and Evaluation

Assessment Methods: Presentation, Demo
--

Wee k	Contents	Course Outcomes	Sample Questions	Teaching/ Learning Strategy	Assessment Method & Schedule
1	Identify an Opportunity and Scope of the Project	CO-1	What is the domain area identified by your team?	Lecture, PPT, Group Discussion	Activity, Display (Week 1)
2	Explore the possibilities and Prepare design brief	CO-1	Present the design brief	Lecture, PPT, Group Discussion	Presentation (Week 2)
3	Apply the methods of empathize and Define Phase	CO-2	Develop Empathy map	Lecture, PPT, Group Discussion, Roll play	Presentation (Week 3)
4	Finalize the problem statement	CO-2	Present your final how might we statement	Lecture, PPT, Group Discussion	Presentation (Week 4)
5	Apply the methods of Ideate Phase	CO-3	Tools used for Ideate phase	Lecture, PPT, Group Discussion	Presentation (Week 5)
6	Generate lots of Ideas	CO-3	Brain storming result	Lecture, PPT, Group Discussion	Presentation (Week 6)
7	Internal Exam - 1		,		
8	Apply the methods of Prototype Phase	CO-4	Evaluate the ideas and select the best one	Lecture, PPT, Group Discussion	Presentation (Week 8)
9	Create prototypes of selected ideas	CO-4	Apply your learning to develop a prototype	Lecture, PPT, Group Discussion	Presentation (Week 9)
10	Test the prototype and collect feedback	CO-4	Present the feedback on test phase	Lecture, PPT, Group Discussion	Presentation (Week 10)
11	Iterate and improve the ideas	CO-5	What is the importance of early failure?	Lecture, PPT, Group Discussion	Presentation (Week 11)
12	Present your solution through Storytelling method	CO-5	Present the most effective solution		Presentation (Week 12)
13	Fine tuning and submission of project report	CO-5	Project Report	PPT	Presentation (Week 13)

14	Internal Exam – 2 (Presentation and Demo of prototype)
15	External Exam (Presentation and Demo of prototype)

 $\Leftrightarrow \Leftrightarrow \Leftrightarrow$