SCHEME OF COURSE WORK (R-2020) ## **Course Details:** | Course Title | : | Manufacturing Technology Lab | | | | |---------------|---|------------------------------|------|-----------|--| | Course Code | : | 22ME1107 | LTPC | 0 0 3 1.5 | | | Program | : | B.Tech. | | | | | Branch | : | Mechanical Engineering | | | | | Semester | : | III | | | | | Prerequisites | : | Manufacturing Technology | | | | ## Course Outcomes (COs): At the end of the course, the student will be able to | CO | Course Outcomes | |-----|---| | CO1 | design and prepare simple castings | | CO2 | build welded joints using TIG welding | | CO3 | build welded joints using MIG welding | | CO4 | demonstrate various metal forming processes | | CO5 | demonstrate processing of plastics | ## **Program Outcomes (POs):** A graduate of mechanical engineering will be able to | PO1 | apply the knowledge of mathematics, science, engineering fundamentals to solve | |------|---| | | complex mechanical engineering problems | | PO2 | Attain the capability to identify, formulate and analyses problems related to | | 102 | mechanical engineering | | PO3 | design solutions for mechanical system components and processes that meet the | | 103 | specified needs with appropriate consideration for public health and safety | | PO4 | perform analysis, conduct experiments and interpret data by using research | | 101 | methods such as design of experiments to synthesize the information and to | | | provide valid conclusions | | PO5 | select and apply appropriate techniques from the available resources and current | | 1 30 | mechanical engineering and software tools | | PO6 | carry out their professional practice in mechanical engineering by appropriately | | | considering and weighing the issues related to society | | PO7 | understand the impact of the professional engineering solutions on environmental | | | safety and legal issues | | PO8 | transform into responsible citizens by resorting to professional ethics and norms | | | of the engineering practice | | PO9 | function effectively in individual capacity as well as a member in diverse teams | | | and in multidisciplinary streams | | P10 | communicate fluently with the engineering community and society, and will be | | | able to prepare reports and make presentations effectively | | P11 | apply knowledge of the engineering and management principles to managing | | | projects and finance in multidisciplinary environments | | P12 | engage themselves in independent and life-long learning to continuing | | | professional practice in their specialized areas of mechanical engineering | ### **Course Outcome versus Program Outcomes:** | CO | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | |-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------| | CO1 | | | | 3 | | | | | 1 | 2 | | | | CO2 | | | | 3 | | | | | 1 | 2 | | | | CO3 | | | | 3 | | | | | 1 | 2 | | | | CO4 | | | | 3 | | | | | 1 | 2 | | | | CO5 | | | | 3 | | | | | 1 | 2 | | | 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), put -: No correlation #### **Program Specific Objectives** | PSO1 | Design, analyze and optimize mechanical systems along with control mechanisms | |------|---| | PSO2 | Manufacture mechanical components by selecting effective processing methods and efficient tools | | PSO3 | Design, analyze and evaluate thermal systems | ### Course Outcomes Versus Program Specific Outcomes | Cos | PSO1 | PSO2 | PSO3 | |-----|------|------|------| | CO1 | | 3 | | | CO2 | | 3 | | | CO3 | | 3 | | | CO4 | | 3 | | | CO5 | | 3 | | 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), put -: No correlation | Assessment Methods: | Day to Day evolution, | |---------------------|-----------------------| | | Record Submission | ## **Teaching-Learning and Evaluation** | Week | Topic / Contents | Course
Outcomes | Sample questions | Teaching-
Learning | Assessment
Method & | |------|--|--------------------|---|-----------------------|---| | | | | | Strategy | Schedule | | 1 | Pattern design and
making: Single
Piece Pattern | CO1 | 1.How do you make a Single piece pattern? 2. What are the different types of patterns? | Experiment | Day to Day
evolution, Record
Submission | | 2 | Sand properties
testing: Grain
Fineness Number,
Green Strength and
Permeability of
molding sand | CO1 | 1.How do you compare
Compression and Shear
strength of a Moulding
sand?
2. How do you find the
grain fineness number for
moulding sand? | Experiment | Day to Day
evolution, Record
Submission | | 3 | Gating Design and pouring time and solidification time calculations of a casting | CO1 | 1. How to calculate pouring time and solidification time for a single piece pattern? | Experiment | Day to Day
evolution, Record
Submission | |----|---|-------------|--|---------------|--| | 4 | Preparation of a butt
joint using TIG
Welding | CO2 | What is the procedure for performing TIG welding? What is the current and voltage used for welding? | Experiment | Day to Day
evolution,
Record
Submission | | 5 | Preparation of a butt
joint using MIG
Welding | CO3 | What is the procedure for performing MIG welding? What is the use of feeding device in MIG welding? | Experiment | Day to Day
evolution,
Record
Submission | | 6 | Preparation of a lap
joint using Spot
welding | - | 1.What are the various parts of Spot welding machine? 2.What is the temperature at Spot welding? | Experiment | Day to Day
evolution,
Record
Submission | | 7 | Internal Exam-I | on CO1, CO2 | 2, and CO3 | | | | 8 | Demonstration of
molding, melting,
pouring and knock
out of simple casting | CO1 | 1. What is the difference between moulding and casting? 2. What are the various furnaces used for melting? | Demonstration | Day to Day
evolution,
Record
Submission | | 9 | Preparation of
blanks using
punchdie set | CO4 | What is meant by blanking? What are the various dies used for blanking? | Experiment | Day to Day
evolution,
Record
Submission | | 10 | Making of holes
using punch-die set | CO4 | What is meant by punching? What are the various dies used for punching? | Experiment | Day to Day
evolution,
Record
Submission | | 11 | Making of articles using deep drawing process | CO4 | What is meant by optimum clearance? What is the procedure used for making cups? | Experiment | Day to Day
evolution,
Record
Submission | | 12 | Making of bends of pipes at different angles | CO4 | 1.What is Bend allowance? 2. What are the various dies used for bending? | Experiment | Day to Day
evolution,
Record
Submission | | 13 | Making of a plastic component using injection molding | CO5 | 1.How do you prepare an elbow by using Injection molding? 2. List out components of spot welding machine. | Experiment | Day to Day
evolution,
Record
Submission | | 14 | Internal Exam-II on CO4 and CO5 | |-------|---------------------------------| | 15,16 | END EXAM |