SCHEME OF COURSE WORK (R- 2020)

Course Details:

Course Title	Thermodynamics	
Course Code	22ME1104	L T P C :3003
Program:	B Tech	
Branch:	Mechanical Engineering	
Semester	ш	

Course Outcomes (COs): At the end of the course, the student will be able to

CO-1	describe thermodynamic systems, properties and apply first law of thermodynamics to non-flow and flow processes
CO-2	apply second law of thermodynamics and Carnot's principle to analyze the performance of heat engine, refrigerator and heat pump
CO-3	determine the entropy changes in different applications to analyze the reversibility or irreversibility of a process
CO-4	determine change in thermodynamic properties in a process using steam tables and Mollier chart
CO-5	explain the importance of Maxwell and T-ds equations and analyze the performance of different air standard cycles

Program Outcomes (POs): A graduate of mechanical engineering will be able

PO-1Apply the knowledge of mathematics, science, engineering fundamentals to solve complex mechanicPO-2Attain the capability to identify, formulate and analyse problems related to mechanical engineering.	cal engineering problems.
PO-2 Attain the capability to identify, formulate and analyse problems related to mechanical engineering.	appropriate consideration
	appropriate consideration
PO-3 Design solutions for mechanical system components and processes that meet the specified needs with for public health and safety.	
PO-4 Perform analysis, conduct experiments and interpret data by using research methods such as design of experiments to synthesize the information and to provide valid conclusions	
PO-5 Select and apply appropriate techniques from the available resources and current mechanical enginee	ering and software tools.
PO-6 Carry out their professional practice in mechanical engineering by appropriately considering and wei society.	ghing the issues related to
PO-7 Understand the impact of the professional engineering solutions on environmental safety and legal is	sues.
PO-8 Transform into responsible citizens by resorting to professional ethics and norms of the engineering	practice.
PO-9 Function effectively in individual capacity as well as a member in diverse teams and in multidisciplin	nary streams.
PO10 Communicate fluently with the engineering community and society, and will be able to prepare report effectively.	ts and make presentations
PO11 Apply knowledge of the engineering and management principles to managing projects and finance ir environments.	1 multidisciplinary
PO12 Engage themselves in independent and life-long learning to continuing professional practice in mechanical engineering.	their specialized areas of

Course Outcome versus Program Outcomes:

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO-1	3	3										
CO-2	3	3	3				1					
CO-3	3	3	3									

CO-4	3	3						
CO-5	3	3	2					

1: Slight (Low), 2: Moderate (Medium, 3: Strong (High)

Program Specific Objectives (PSOs):

The student must attain the knowledge and skills to

PSO-1	Design, analyse and optimize mechanical systems along with control mechanisms
PSO-2	Manufacture mechanical components by selecting effective processing methods and efficient tools
PSO-3	Design, analyse and evaluate thermal systems

Course Outcome versus Program Specific Outcomes:

COs	PSO1	PSO2	PSO3
CO-1			3
CO-2			3
CO-3			3
CO-4			3
CO-5			3

Assessment Methods: Assignment (10M)/ Quiz(10M) / Mid-Test(20M) / End Exam(70M)

Teaching-Learning and

Evaluation

Week	CONTENTS	Course Outcomes	Sample questions	TEACHING- LEARNING STRATEGY	Assessment Method & Schedule
1	Unit - I Basic Concepts – Macroscopic and microscopic viewpoints, thermodynamic system and control volume – closed, open and isolated systems – intensive and extensive properties -	CO1	Explain quasi static process	Lecture Problem solving	Assignment-1 Quiz-1 Mid-1
2	Unit - I quasi-static process, point and path function, forms of energy, ideal gas and real gas, zeroth law of thermodynamics – measurement of temperature.	CO1	Explain construction and working principle constant volume gas thermometer	Lecture	Assignment-1 Quiz-1 Mid-1
3	Unit - I First law of Thermodynamics: Joule's experiment – first law of thermodynamics, corollaries-perpetual motion machine of first	CO1	Explain joule's experiment with neat sketch	Lecture Problem solving	Assignment-1 Quiz-1 Mid-1

kind, first law applied to non-flow		

4	Unit - I first law applied to flow processes - limitations of first law of thermodynamics - Problems	CO1	Derive steady flow energy equation	Lecture Problem solving	Assignment-1 Quiz-1 Mid-1
5	Unit - II Second Law of Thermodynamics: Distinction between heat and work – cyclic heat engine – energy reservoirs – Kelvin-Planck statement of second law	CO2	Problem on any one of the device	Lecture Problem solving	Assignment-1 Quiz-1 Mid-1
6	Unit - II Clausius statement of second law – refrigerator and heat pump – equivalence of Kelvin-Planck and Clausius statements – perpetual motion machines of second kind –	CO2	Explain equivalence between Kelvin Planck and Clausius statements	Lecture Problem solving	Assignment-1 Quiz-1 Mid-1
7	Unit - II reversibility and irreversibility Carnot cycle – Carnot theorem – Carnot efficiency.	CO2	Show that $(COP)_{HP} = (COP)_{R} + 1$	Lecture Problem solving	Assignment-1 Quiz-1 Mid-1
8	Unit - III Entropy: Clausius theorem - the property of entropy	CO3	Explain Clausius inequality	Lecture Problem solving	Assignment-2 Quiz-2 Mid-2
9	Mid Test - I				Mid Test - I
10	Unit - III The inequality of Clausius – entropy change in an irreversible process – entropy principle – applications of entropy principle	CO3	Establish inequality of Clausius List out the reasons for irreversibility Prove that adiabatic mixing of two fluids is irreversible	Lecture Problem solving	Assignment-2 Quiz-2 Mid-2
11	Unit - III Maximum work obtainable from a finite body and a thermal energy reservoir – entropy transfer with heat flow - entropy generation in a closed and open systems. Definition of available energy, exergy and irreversibility -Problems	CO3	Define entropy generation, exergy and anergy Explain that entropy transfer with heat flow		Assignment-2 Quiz-2 Mid-2
12	Unit - IV Properties of Pure Substances: Pure Substances – P-V-T surfaces – p-v , T-s and h-s diagram, Mollier chart – dryness fraction	CO4	Explain P-V-T surface of pure substance	Lecture Problem solving	Assignment-2 Quiz-2 Mid-2
13	Unit - IV property tables – analysis of steam undergoing various thermodynamic processes using Mollier chart – dryness fraction measurement.	CO4	Explain separating throttling calorimeter with neat sketch	Lecture Problem solving	Assignment-2 Quiz-2 Mid-2
14	Unit - V Thermodynamic Relations: Maxwell equations, T-ds equations, difference in heat capacities, ratio of heat capacities, energy equation, Joule- Thompson coefficient, Clausius-Clapeyron equation.	CO5	Derive Maxwell's and TdS equations	Lecture Problem solving	Assignment-2 Quiz-2 Mid-2
15	Unit - V Air Standard Cycle – Otto Cycle, Diesel Cycle: P-V and <i>T-s</i> diagrams - description and efficiencies	CO5	Explain the working of Otto/Diesel/ cycle with help of P-V and T-S diagrams	Lecture	Assignment-2 Quiz-2 Mid-2

16	Unit - V Air Standard Cycle – Dual Cycle: P-V and <i>T-s</i> diagrams - description and efficiencies mean effective pressures. Comparison of Otto, Diesel and dual cycles	CO5	Explain the working of dual cycle with help of P-V and T-S diagrams	Lecture Problem solving	Assignment-2 Quiz-2 Mid-2
----	--	-----	---	-------------------------------	---------------------------------

17	Unit - V Problems on Air Standard Cycle	CO5	An ideal Otto cycle has a compression ratio of 8. At the beginning of the compression process, air is at 95 kPa and 27°C, and 750 kJ/kg of heat is transferred to air during the constant-volume heat-addition process. determine (a) the pressure and temperature at the end of the heat addition process, (b) the network output, (c) the thermal efficiency, and (d) the mean effective pressure for the cycle.	Assignment-2 Quiz-2 Mid-2
18	Mid Test - II			Mid Test - II
19/20	END EXAM			END EXAM