SCHEME OF COURSE WORK (R-2020) #### **Course Details:** | Course Title | Materials Science and Engineering | LTPC | 2002 | |----------------|-----------------------------------|------|------| | Course Code | 22ME1101 | | | | Program | B. Tech | | | | Specialization | Mechanical Engineering | | | | Semester | п | | | Course Outcomes (COs): At the end of the course a student will be able to | - | | |-----|--| | СО | Course Outcomes | | CO1 | explain binary phase diagrams | | CO2 | apply heat treatment to different applications | | CO3 | select steels and cast irons for a given application. | | CO4 | select nonferrous metals and alloys in engineering. | | CO5 | choose composites for various applications and assess the properties of nano-scale materials and their applications. | Program Outcomes (POs): A graduate of mechanical engineering will be able to | PO 1 | Apply the knowledge of mathematics, science, engineering fundamentals to solve complex mechanical engineering problems | |-------|---| | PO 2 | Identify, formulate and analyze problems related to mechanical engineering | | PO 3 | Design solutions for mechanical system components and processes that meet the specified needs with appropriate consideration for public health and safety | | PO 4 | Perform analysis, conduct experiments and interpret data by using research methods such as design of experiments to synthesize the information and to provide valid conclusions | | PO 5 | Select and apply appropriate techniques from the available resources and current mechanical engineering and software tools | | PO 6 | Carry out their professional practice in mechanical engineering by appropriately considering and weighing the issues related to society | | PO 7 | Understand the impact of the professional engineering solutions on environmental safety and legal issues | | PO 8 | Transform into responsible citizens by resorting to professional ethics and norms of the engineering practice | | PO 9 | Function effectively in individual capacity as well as a member in diverse teams and in multidisciplinary streams | | PO 10 | Communicate fluently with the engineering community and society, and will be able to prepare reports and make presentations effectively | | PO 11 | Apply knowledge of the engineering and management principles to managing projects and finance in multidisciplinary environments | | PO 12 | Engage themselves in independent and life-long learning to continuing professional practice in their specialized areas of mechanical engineering | #### **Course Outcome Versus Program Outcomes:** | COs | PO1 | PO2 | PO3 | PO4 | PO5 | P06 | P07 | PO8 | PO9 | PO10 | PO11 | PO12 | |-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------| | CO1 | 3 | | | | | | | | | | | 1 | | CO2 | 3 | | | | | | | | | | | 1 | | CO3 | 3 | 3 | | | 2 | | | | | | | 1 | | CO4 | 3 | 3 | | | 2 | | | | | | | 1 | | CO5 | 3 | 3 | | | 2 | | | | | | | 1 | ^{1:} Slight(low), 2 -Moderate (Medium), 3- Substantial(high), Blank - No correlation ### **Program Specific Objectives (PSOs):** | Week | TOPIC / CONTENTS | Course
Outcomes | Sample questions | TEACHING
LEARNING
STRATEGY | Assessment
Method
&Schedule | |------|---|--------------------|---|--|-----------------------------------| | 1 | Structure of Metals: metallic crystal structures: BCC, FCC and HCP, crystallization, | CO1 | Calculate PF of bcc and fcc unit cells. | Lecture
Discussion
Problem solving | Assignment-I
Mid-I
Quiz-I | | 2 | crystal imperfections: point, line, interstitial and volume defects; plastic deformation: slip and twinning | CO1 | Explain
Crystal
imperfections? | Lecture
Discussion | Assignment-I
Mid-I
Quiz-I | | | Constitution of Alloys:
substitutional and
interstitial solid solutions | CO1 | What are
Hume- Rothery
rules? | Lecture
Discussion | Assignment-I
Mid-I
Quiz-I | |--|---|-----|-------------------------------------|-----------------------|---------------------------------| | | | | | | | The students must attain the knowledge and skills to | PSO-1: | Design, analyze and optimize mechanical systems along with control mechanisms | |--------|---| | PSO-2: | Manufacture mechanical components by selecting effective processing methods and efficient tools | | PSO-3: | Design, analyze evaluate thermal systems | Course Outcomes Versus Program Specific Outcomes: | coarse cateomics versus i rogium opecine cateomicsi | | | | | | | |---|------|------|------|--|--|--| | Cos | PSO1 | PSO2 | PSO3 | | | | | CO-1 | | 3 | | | | | | CO-2 | | 3 | | | | | | CO-3 | | 3 | | | | | | CO-4 | | 3 | | | | | | CO-5 | | 3 | | | | | # 1: Slight(low), 2 -Moderate (Medium), 3- Substantial(high), Blank - No correlation | Assessment | Assignment / Quiz / Seminar / Case Study / Mid-Test / End Exam | |------------|--| | Methods: | | **Teaching-Learning and Evaluation** | 4 | binary phase diagrams:
isomorphous system,
eutectic, peritectic,
eutectoid and peritectoid
reactions | CO1 | Explain the construction of a binary equilibrium diagram. | Lecture
Discussion
Problem solving | Assignment-I
Mid-I
Quiz-I | |---|--|-----|--|--|---------------------------------| | 5 | Iron-Iron Carbide Diagram: Iron-Iron Carbide diagram and microstructural aspects of ferrite, cementite, pearlite, austenite and ledeburite | CO2 | Sketch and explain
Fe- Fe3C
equilibrium
diagram. | Lecture
Discussion
Problem solving | Assignment-I
Mid-I
Quiz-I | | 6 | Plain carbon steels and their applications | CO2 | Explain the properties and applications of plain carbon Steels | Lecture
Discussion | Assignment-I
Mid-I
Quiz-I | | 7Heat | Treatment of | !
!
! | Steels:CO3Discuss | various | | |-------|--------------|-----------------|-------------------|---------|-----| | | | !
! | | | i | | | | | | | | | | | !
! | | | i | | | | | | | | | İ | | I
I | | | i | |
 | | I
I
I | | |) | | | | | | | | | | | I
I | | | i i | | ! | | <u>!</u> ! | | ! | | caseLectureAssignment-I annealing, normalizing,hardening methodsDiscussionMid-I Quiz-I hardening and tempering, TTT diagrams, austempering, martempering, case hardening methods | 8 | Alloy Steels: Effect of alloying elements on Iron-Iron carbide diagram, Hadfield manganese steel, stainless steels, tool steels, HSS | CO3 | What are the properties and applications of stainless steels | Lecture
Discussion | Assignment-I
Mid-I
Quiz-I | | |----|---|-----|--|-----------------------|------------------------------------|--| | 9 | Mid-I | | | | | | | 10 | Cast irons: Micro structure, properties and applications of white cast iron, malleable cast iron, grey cast iron, nodular cast iron and alloy cast irons. | CO3 | Explain the structure, properties and applications of cast irons | Lecture
Discussion | Assignment-II
Quiz-II
Mid-II | | | 11 | Copper base alloys | CO4 | What are
stress
corrosion
cracking and
dezincificatin | Lecture
Discussion | Assignment-II
Quiz-II
Mid-II | |----|--|-----|---|-----------------------|------------------------------------| | 12 | Aluminum base alloys | CO4 | Discuss the properties and application of aluminum base alloys | Lecture
Discussion | Assignment-II
Quiz-II
Mid-II | | 13 | Titanium alloys
base | CO4 | What are the effects of alloying elements in titanium base alloys | Lecture
Discussion | Assignment-II
Quiz-II
Mid-II | | | Polymeric Materials:
Structure and properties
of polymeric materials and
their applications | CO4 | Distinguish between thermosets and thermoplastics | Lecture
Discussion | Assignment-II
Quiz-II
Mid-II | | | Ceramics, abrasive materials, Nanomaterials-definition, properties and applications for the above. | CO5 | What are the characteristics of ceramic materials? | Lecture
Discussion | Assignment-II
Quiz-II
Mid-II | | 16 | Composite Materials: Particle reinforced materials, fiber reinforced materials | CO5 | Discuss various types of fibers used in composites | Lecture
Discussion | Assignment-II
Quiz-II
Mid-II | | 17 | metal ceramic and polymeric matrix composites and C-C composites. | CO5 | What are the applications of ceramic matrix composites | Lecture
Discussion | Assignment-II
Quiz-II
Mid-II | | 18 | Mid-II | | | | | | 19 | End Semester | | | | |