SCHEME OF COURSE WORK (R-2020)

Course Details:

Course Title	Python Programming Lab(Skill Oriented Course Elective – I)						
Course Code	20IT11S1 L T P C 0 0 3 2						
Program:	B. Tech.	B. Tech.					
Specialization:	Mechanical Engineering						
Semester	Ш						

Course Outcomes (COs): At the end of the course, the student will able to

CO-1	Apply comprehensions, different Decision-Making statements and Functions.			
CO-2	Implement various data types like lists, tuples, strings.			
CO-3	Use different File handling operations and Maps.			
CO-4	Apply Object oriented programming in Python types.			
CO-5	Use Pandas and Matplotlib in developing various applications.			

Program Outcomes (POs): A graduate of mechanical engineering will be able

to

ιο	
PO-1	Apply the knowledge of mathematics, science, engineering fundamentals to solve complex mechanical engineering problems.
PO-2	Attain the capability to identify, formulate and analyze problems related to mechanical engineering.
PO-3	Design solutions for mechanical system components and processes that meet the specified needs with appropriate consideration for public health and safety.
PO-4	Perform analysis, conduct experiments and interpret data by using research methods such as design of
	experiments to synthesize the information and to provide valid conclusions
PO-5	Select and apply appropriate techniques from the available resources and current mechanical engineering and software
	tools.
PO-6	Carry out their professional practice in mechanical engineering by appropriately considering and weighing the issues related
	to society.
PO-7	Understand the impact of the professional engineering solutions on environmental safety and legal issues.
PO-8	Transform into responsible citizens by resorting to professional ethics and norms of the engineering practice.
PO-9	Function effectively in individual capacity as well as a member in diverse teams and in multidisciplinary streams.
PO-10	Communicate fluently with the engineering community and society, and will be able to prepare reports and make
	presentations effectively.
PO-11	Apply knowledge of the engineering and management principles to managing projects and finance in multidisciplinary
	environments.
PO-12	Engage themselves in independent and life-long learning to continuing professional practice in their specialized areas of
	mechanical engineering.

Course Outcome Versus Program Outcomes:

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO-1	2			2	3							2
CO-2	2			2	3							2
CO-3	2			2	3							2
CO-4	2			2	3							2
CO-5	2			2	3							2

Program Specific Objectives (PSOs):

The student must attain the knowledge and skills to

PS	O-1	-1 Design, analyse and optimize mechanical systems along with control mechanisms					
PS	O-2	Manufacture mechanical components by selecting effective processing methods and efficient tools					
PS	0-3	Design, analyse and evaluate thermal systems					

Course Outcome Versus Program Specific Outcomes:

COs	PSO1	PSO2	PSO3
CO-1	2	2	2
CO-2	2	2	2
CO-3	2	2	2
CO-4	2	2	2
CO-5	2	2	2

1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), put -: No Correlation

Teaching-Learning and Evaluation

Assessment Methods:	Observation / Record / End Exam
----------------------------	---------------------------------

Week	Contents	Course Outcomes	Sample Questions	Teaching Learning Strategy	AssessmentMethod & Schedule
1	Input and Output, Variables and Functions	CO1	Python Program to display all prime numbers within an interval of 20 and 50	Program execution in the lab	Day to day evaluation, Record submission
2	Variables and Functions	CO1		Program execution in the lab	Day to day evaluation, Record submission
3	Loops and conditionals	CO1	Write a program to print multiplication tables of 8, 15, 69	Program execution in the lab	Day to day evaluation, Record submission
4	Strings	CO2	Write a program to find the length of the string without using any library functions.		Day to day evaluation, Record submission
5	Lists	CO2	Write a program to perform any 5 built-in functions by taking any list.	Program execution in the lab	Day to day evaluation, Record submission

6	Tuples	CO2	Write a program to create tuples (name, age, address, college) for at least two members	Program execution in the lab	Day to day evaluation, Record submission	
7	Sets	CO2	Write a program to sort given list of strings in the order of their vowel counts.	Program execution in the lab	Day to day evaluation, Record submission	
8	Dictionaries	CO3	Write a program to sum all the items in a given dictionary.	Program execution in the lab	Day to day evaluation, Record submission	
9	Files	CO3	Write a program to find the most frequent words in a text read from a file.	Program execution in the lab	Day to day evaluation, Record submission	
10	Classes	CO4	Write a Python class named Circle constructed by a radius and two methods which will compute the area and the perimeter of a circle.	Program execution in the lab	Day to day evaluation, Record submission	
11	Pandas	CO5	Create a dictionary with at least five keys and each key represent value as a list where this list contains at least ten values and convert this dictionary as a pandas data frame and explore the data through the data frame as follows: i. Apply head () function to the pandas data frame ii. Perform various data selection operations on Data Frame	Program execution in the lab	Day to day evaluation, Record submission	
12	Matplotlib	CO5	Write a Python program to draw a line using given axis values with suitable label in the x axis, y axis and a title.	Program execution in the lab	Day to day evaluation, Record submission	
	Lab External Exam					