SCHEME OF COURSE WORK

Course Details:

Course Title	: CHEMISTRY OF MATERIALS	
Course Code	: 22BC1103 L T P C 3 0 0 3	
Program:	: B.Tech.	
Specialization:	: MECHANICAL ENGINEERING	
Semester	: II	
Prerequisites	:Fundamentals of chemistry	
Courses to whice prerequisite	h it is a -	

Course Outcomes (COs):

After completion of the course, student shall be able to:

Course	e Outcomes (COs):	Learning Outcomes			
CO-1	Illustrate the working of energy storage devices (L3).	1. apply standard reduction potential data to calculate the standard cell potential (L3) 2. apply redox principles for construction of batteries and fuel cells (L3) 3. illustrate the construction and working of a pv cell (L3)			
CO-2	Apply the principles involved in corrosion to predict and prevent corrosion in real life systems (L3).				
CO-3	Determine the water quality and prescribe the remedial measures for domestic as well as industrial usage (L3).	1.determine total hardness of a water sample (L3) 2. illustrate problems associated with hard water (L3) 3.explain the principles of reverse osmosis and electrodialysis (L2) 4. demonstrate the Industrial water treatment processes (L3)			
CO-4	Use different types of polymers to specific purposes (L3).	1.explain the properties of refractories and lubricants (L2) 2. illustrate the chemical reactions involved in the manufacturing of cement (L3) 3. differentiate thermoplastic and thermosetting resins (L3)			

CO-5	Explain the importance of nano and	1. classify nano and smart materials (L2)		
	smart materials (L2)	2. explain the synthesis and characterization		
		methods of nano materials (L2)		
		3. explain the importance of different types of		
		smart materials (L2)		

Program Outcomes (POs):

A graduate of Mechanical engineering will be able to

0	- **** ***** ** - **- * * - **- * * - **- *
1	Apply the knowledge of mathematics, science, engineering fundamentals to solve complex
	mechanical engineering problems.
2	Attain the capability to identify, formulate and analyse problems related to mechanical
	engineering.
3	Design solutions for mechanical system components and processes that meet the specified
	needs with appropriate consideration for public health and safety.
4	Conduct experiments, perform analysis and interpretation of data by using research methods
	such as design of experiments to synthesize the information and to provide valid conclusions.
5	Select and apply appropriate techniques from the available resources and current mechanical
	engineering and software tools.
6	Carry out their professional practice in mechanical engineering by appropriately considering
	and weighing the issues related to society.
7	Understand the impact of the professional engineering solutions on environmental safety and
	legal issues.
8	Transform into responsible citizens by resorting to professional ethics and norms of the
	engineering practice.
9	Function effectively in individual capacity as well as a member in diverse teams and in
	multidisciplinary streams.
10	Communicate fluently with the engineering community and society, and will be able to prepare
	reports and make presentations effectively.
11	Apply knowledge of the engineering and management principles to managing projects and
	finance in multidisciplinary environments.
12	Engage themselves in independent and life-long learning to continuing professional practice in
	their specialized areas of mechanical engineering.

PROGRAMME SPECIFIC OUTCOMES (PSOs):

The students must attain the knowledge and skills to

PSO 1	Design, analyse and optimize mechanical systems along with control mechanisms
PSO 2	Manufacture mechanical components by selecting effective processing methods and efficient tools
PSO 3	Design, analyse evaluate thermal systems

Course Outcome Versus Program Outcomes:

Course	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
outcomes												
CO1	3	3	-	-	-	-	-	-	-	-	-	-
CO2	3	3	-	-	-	-	-	-	-	-	-	2
CO3	3	2	-	-	-	-	-	-	-	-	-	2
CO4	3	3	-	-	-	-	-	-	-	-	-	2
CO5	3	3	-	-	-	-	-	-	-	-	-	2

Mapping Levels:

1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), put -: No Correlation

Course outcomes vs Program Specific Outcomes

y a regressive special sections								
COs	PSO1	PSO2	PSO3					
CO-1	•	-	•					
CO-2	-	-	-					
CO-3	-	-	-					
CO-4	-	-	-					
CO-5	-	-	-					

Course Outcome-Assessment

Week	TOPIC / CONTENTS	Course	Sample questions	Teachinglearning	
		Outcomes		strategy	Method &
					Schedule
1	Electrode potential,	CO1	Q) Derive Nernst	 Lecture / 	Assignment-I
	type of		equation for electrode	Discussion	(Week - 4)
	electrochemical cells.		potential.	 Problem solving 	Mid test-I
					(Week-8)
2	Reference	CO1	Q) Write construction	 Lecture / 	Assignment-I
	ElectrodesNHE,		and working of calomel	Discussion	(Week - 4)
	Reference electrodes,		electrode	 Problem solving 	Mid test-I
	Weston cadmium cell.				(Week-8)
3	Construction and	CO1	Q) Explain	 Lecture / 	Assignment-I
	working principles of		Construction and	Discussion	(Week - 4)
	batteries		working principles of	 Problem solving 	Mid test-I
			lead acid battery		(Week-8)
4	Definition of	CO2	Q) Illustrate the	□ Lecture /	Quiz-I
	corrosionTypes of		mechanism of	Discussion	(Week-7)
	corrosion		electrochemical		Mid test-I
			corrosion.		(Week-8)

5	factors influencing corrosion, corrosion controlling methods	CO2	Q) Explain factors influencing corrosion Q) Explain the process of galvanizing	Lecture / Discussion	Quiz-I (Week-7) Mid test-I (Week-8)
6	Organic coatings-paints and varnishes	CO2 .	Q) Discuss the constituents of paints and varnishes	□ Lecture / Discussion	Quiz-I (Week-7) Mid test-I (Week-8)
7	Hardness-types, disadvantages and their determining methods	CO3	Q) Explain the determination of hardness by EDTA	Lecture / Discussion	Mid test-I (Week-8)

			method.		
8	MID TEST-I			0	
9	Boiler troubles- Priming and foaming, Scale and sludge Desalination of brackish water,	CO3	Q) Write the drawbacks of priming and foaming	Lecture / Discussion	Assignment-II (Week - 12)
10	Water softening methods-Zeolite, ion exchange methods	CO3	Q) Explain the ion exchange method for softening the hard water.	Lecture / Discussion	Mid test-II (Week-16) Assignment-II (Week - 12)
11	Polymers- Types of polymers-Mechanism of addition polymerization Plastics-differences between thermoplastic and thermosetting resins. Nylon 6,6 and Polystyrene	CO4	Q)Distinguish thermoplastic and thermosetting resins Q)Describe the mechanism of free radical addition polymerisation	 Lecture / Discussion 	Mid test-II (Week-16) Assignment-II (Week - 12

12	Cement- Manufacture of Portland cement – setting and hardening of cement,	CO4	Q) Write setting and hardening reactions of cement	Discussion	Mid test-II (Week-16) Assignment-II (Week - 12
13	Lubricantsclassification, Mechanism of lubrication and Properties. Refractories-Properties	CO4	Q) Describe the mechanism of lubrication.	□ Lecture / Discussion	Mid test-II (Week-16) Assignment-II (Week - 12
14	Nano Materials: Introduction to Nano materials, Classification, Properties.	CO5	Q) Classify Nano materials based on dimension.	□ Lecture / Discussion	Quiz-II (Week-15) Mid test-II (Week-16)
15	Synthesis of nano materials-Sol gel and Reverse Micellar Method. Types of smart materials-Applications	CO5	Q).Describe Sol gel method of synthesis of nano particles	□ Lecture / Discussion	Quiz-II (Week-15) Mid test-II (Week-16)
16	MID TEST-II				
17	END EXAM				