CONTROL SYSTEMS & SIMULATION LAB

Course Code: 22EE1106 T P C 0 0 3 1.5

Prerequisites: Control Systems

Course Outcomes: At the end of lab course, students will able to

CO1: Obtain the characteristics of synchros and magnetic amplifiers

CO2: Determine the effects of feedback on second order system and illustrate the effects of controllers

CO3: Draw the root locus, bode plot and Determine state model for the given transfer function of linear time invariant systems by using Simulation tools

CO4: Determine the characteristics of servo motors

CO5: Design compensation networks for linear time invariant systems

The following are the experiments required to be conducted as compulsory experiments:

- 1. Characteristics of Synchros.
- 2. Characteristics of magnetic amplifiers.
- 3. Time response of second order system (Linear System Simulator)
- 4. Characteristics of AC servo motor
- 5. Plot Root locus of LTI system-Verification using Simulation tools.
- 6. State space analysis of LTI system- verification using Simulation tools.
- 7. Characteristics of lead compensator and Design using Bode plot– Verification using Simulation tools.
- 8. Characteristics of lag compensator and Design using Bode plot Verification using Simulation tools. 9. Draw Nyquist plot of LTI system-Verification using Simulation tools
- 10. Effect of P, PD, PI and PID Controller on a second order system.

In addition to the above Ten experiments, at least any two of the Experiments from the list are required to be conducted:

- 11. Temperature controller using P, PI controllers.
- 12. PSPICE-simulation of Op-Amp based integrator and differentiator circuits.
- 13. Effect of feedback on DC servo motor.
- 14. Draw Bode plot of LTI system-Verification using Simulation tools.

TEXT BOOK:

1. I. J. Nagrath and M. Gopal, Control Systems Engineering, New Age International, 6th edition 2018 **REFERENCES:**

1. M. Gopal, Control Systems: Principles and Design, 4th Edition McGraw Hill Education, June 2012.

- 2. F.Golnaraghi and B.C.Kuo, Automatic Control Systems, 9th Edition, Wiley, 2014.
- 3. K. Ogata, Modern Control Engineering, 5th Edition, Prentice Hall, 2009.