ENGINEERING ELECTROMAGNETICS

Course Code: 22EE1102 L T P C

3 0 0 3

Prerequisites: Physics

Course Outcomes: At the end of the Course the student shall be able to

CO1: Explain the laws concerning static electric fields

CO2: Evaluate the boundary conditions in conductors and dielectrics

C03: Examine the equations concerned with static magnetic fields

C04: Evaluate the energy stored and energy density in electromagnetic fields

C05: Summarize Maxwell's equations

UNIT-I STATIC ELECTRIC FIELDS 10 Lectures

Electrostatic Fields - Coulomb's Law - Electric Field Intensity (EFI) due to Line, Surface and Volume charges- Work Done in Moving a Point Charge in Electrostatic Field-Electric Potential due to point charges, line charges and Volume Charges - Potential Gradient - Gauss's Law-Application of Gauss's Law-Maxwell's First equation - Numerical Problems. Laplace's Equation and Poisson's Equations - Solution of Laplace's Equation in one Variable.

Electric Dipole - Dipole Moment - Potential and EFI due to Electric Dipole - Torque on an Electric Dipole in an Electric Field –Numerical Problems.

Learning Outcomes: The students will be able to

- 1. Understand electrostatic fields and various applicable laws. (L2)
- 2. Understand the concept of the electric field and to calculate electric fields from given charge distributions. (L2)
- 3. Understand that the electrostatic potential obeys the equations of Laplace and Poisson under appropriate circumstances(L2)

UNIT-II 10 Lectures

BEHAVIOR OF CONDUCTORS AND INSULATORS IN ELECTRIC FIELD

Behaviour of Conductors in an Electric Field-Conductors and Insulators – Electric Field Inside a Dielectric Material – Polarization – Dielectric Conductors and Dielectric Boundary Conditions – Capacitance-Capacitance of Parallel Plate, Spherical & Co-axial capacitors – Energy Stored and Energy Density in a Static Electric Field – Current Density – Conduction and Convection Current Densities – Ohm's Law in Point Form – Equation of Continuity – Numerical Problems

Learning Outcomes: The students will be able to

- 1. explain the important properties of conductors as arising from their electric charge (L2)
- 2. become familiar with the concept of a capacitor and its capacitance (L1)

3. define the boundary conditions for different situations (L1)

UNIT-III MAGNETOSTATICS

10 Lectures

Static Magnetic Fields – Biot-Savart Law – Oersted's experiment – Magnetic Field Intensity (MFI) due to a Straight, Circular & Solenoid Current Carrying Wire – Maxwell's Second Equation. Ampere's Circuital Law and its Applications Viz., MFI Due to an Infinite Sheet of Current and a Long Current Carrying Filament – Point Form of Ampere's Circuital Law – Maxwell's Third Equation – Numerical Problems.

Magnetic Force — Lorentz Force Equation – Force on Current Element in a Magnetic Field - Force on a Straight and Long Current Carrying Conductor in a Magnetic Field - Force Between two Straight and Parallel Current Carrying Conductors – Magnetic Dipole and Dipole moment – A Differential Current Loop as a Magnetic Dipole – Torque on a Current Loop Placed in a Magnetic Field – Numerical Problems

Learning Outcomes: Students should be able to

- 1. become familiar with the Biot-Savart law and calculate the magnetic field and magnetic forces (L1)
- 2. devise methods to calculate torque on a current loop (L5)
- 3. compare forces between current carrying conductors in different directions.(L4)

UNIT-IV MAGNETIC POTENTIAL

10 Lectures

Scalar Magnetic Potential and Vector Magnetic Potential and its Properties - Vector Magnetic Potential due to Simple Configuration – Vector Poisson's Equations. Self and Mutual Inductances – Neumann's Formula – Determination of Self Inductance of a Solenoid and Toroid and Mutual Inductance Between a Straight, Long Wire and a Square Loop Wire in the Same Plane – Energy Stored and Intensity in a Magnetic Field – Numerical Problems

Learning Outcomes: Students should be able to

- 1. understand the concept of magnetic potential for given charge distributions. (L2)
- 2. calculate self and mutual inductance of a solenoid, toroid (L3)

UNIT-V TIME VARYING FIELDS

10 Lectures

Faraday's Law of Electromagnetic Induction – It's Integral and Point Forms – Maxwell's Fourth Equation. Statically and Dynamically Induced E.M.F's – Simple Problems – Modified Maxwell's Equations for Time Varying Fields – Displacement Current. Wave Equations – Uniform Plane Wave Motion in Free Space, Poynting Theorem – Poynting Vector and its Significance

Learning Outcomes: Students should be able to

- 1. appraise Faraday's law of electromagnetics (L1)
- 2. interpret the time varying fields(L6)

TEXT BOOKS:

1. Sadiku, Kulkarni, Principles of Electromagnetics, 6th Edition, OXFORD University Press, 2015.

2. W H Hayt, J A Buck, M Jaleel Akthar, Engineering Electromagnetics, Mcgraw Hill Education, Special Indian Edition, 2014, 8e, New Delhi / (Kindle Edition)

REFERENCES:

- 1. Krauss/Fleisch, Electromagnetics with applications, , Mcgraw Hill International, 1998
- 2. C.L. Wadhwa, Engineering Electromagnetics, New Age International Publishers, 2012, New Delhi.
- 3. GSN Raju, Electromagnetic field theory and transmission lines, Dorling Kindersley Publications, 2006, New Delhi
- 4. Nannapeni Narayana Rao, "Elements of Engineering Electromagnetics", Prentice Hall of India Pvt. Ltd, 2004
- 5. D J Griffiths, "Introduction to Electro Dynamics", 4th Edition, Prentice Hall of India Pvt. Ltd, 2015