GAYATRI VIDYA PARISHAD COLLEGE OF ENGINEERING (Autonomous) Approved by AICTE & Affiliated to Andhra University, Visakhapatnam from 2022-23

(Affiliated to JNTUK, Kakinada upto 2021-22)
Re-accredited by NAAC twice with 'A' Grade with a CGPA of 3.47/4.00
Madhurawada, Visakhapatnam - 530048

SCHEME OF COURSE WORK

Course Details:

Course Title	Electronic Devices and Circuits
Course Code	22EC11D3
Program	B.Tech
Branch	Electrical & Electronics Engineering
Semester	Ι
Prerequisites	Basic Electrical Engineering, Electrical circuit Analysis, Engineering
	Physics and Basics of Mathematics
Course to which	All Advanced courses in electronics.
it is prerequisite	

Course outcomes (CO's): At the end of the course the student will be able to

CO 1: demonstrate the characteristics of PN Junction diodes and Zener Diode (L3)

CO 2: examine the V-I characteristics in different types of transistors (L3).

CO 3: apply biasing techniques to achieve thermal stabilization (L4)

CO 4: analyze the performance of a transistor using h-parameters (L4)

CO 5: illustrate the function of feedback amplifiers and oscillators (L3)

Program Outcomes (POs):

The student of Electrical and Electronics Engineering at the end of the program will be able to:

PO-1	Apply the knowledge of basic sciences and electrical and electronics engineering						
	fundamentals to solve the problems of power systems and drives.						
PO-2	Analyze power systems that efficiently generate, transmit and distribute electrical						
	power in the context of present Information and Communications Technology.						
PO-3	Design and develop electrical machines and associated controls with due						
	considerations to societal and environmental issues.						
PO-4	Design and conduct experiments, analyze and interpret experimental data						
	for performance analysis.						
PO-5	Apply appropriate simulation tools for modeling and evaluation of electrical systems.						
P0-6	Apply the electrical engineering knowledge to assess the health and safety issues						
	and their consequences.						
PO-7	Demonstrate electrical engineering principles for creating solutions for						
	sustainable development.						
PO-8	Develop a techno ethical personality that help to serve the people in general						
	and Electrical and Electronics Engineering in particular.						
PO-9	Develop leadership skills and work effectively in a team to achieve project objectives.						
PO-10							
PO-11	· ·						
	multi disciplinary environments.						
PO-12	Pursue life-long learning as a means of enhancing the knowledge and skills.						
	Tarbae me tong teathing as a means of emilateing the knowledge and skins.						

Course Outcome/Program Outcomes:

CO's	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012
CO-1	3	2	2	3	2	2		2	2	2		2
CO-2	2	2		3	2	2	2	3	2	2	2	2
CO-3	2	2	2		2	2			2	2	2	2
CO-4	2	2	2		2	2	2			2		
CO-5	2	2	2	2	2	2		2	2	2	2	2

^{3 -} Strongly correlated, 2- Moderately correlated, 1- weak correlated Blank - No correlation

Assessment Methods:	Assignment / Quiz / Seminar / Case Study / Mid-Test / End Exam

Teaching-Learning and Evaluation

Week	Topic/Contents	Course Outcomes	Sample questions	Teaching Learning Strategy	Assessment Method & Schedule
1	Introduction to Semiconductor materials, VI Characteristics of Diode, Zener diode Characteristics, Zener diode as Voltage Regulator, Tunnel diode, LED	CO-1	Define energy gap and explain the differences for insulators, conductors and semiconductors materials Explain the VI Characteristics of a diode and compare Ge and Si Diode characteristics. Design a zenerregulator to meet the following specifications: Load voltage V _L =7.5V, source voltage V _s = 25V and load current I _L = 30mA.	Lecture/ Discussion	Mid-Test 1 (Week 9)

2	Rectifiers-	CO-1	1. A single phase full –	Lecture/	Mid-Test 1
	Half wave rectifier,		wave rectifier	Power Point	(Week 9)
	Full wave rectifier		uses semiconductor	Presentation	
	Advantages of full		diodes. The voltage drop		
	wave rectifier Over		and internal resistance of		
	half wave rectifier		the diodes may be		
			neglected. Assume an ideal		
			transformer.		
			2. Prove that one		
			diode conducts for one half		
			cycle and that the other		
			diode conducts for the		
			remaining half cycle of		
			the input line voltage if the		
			load consists of a resistor R		
			in series with an inductor L.		
			3. What are the		
			advantages of full wave		
			rectification over half wave		
			rectification?		

2	C Dile		vada, visaknapatnam - 550048	T . /	Mid Task 1
3	C-Filter	CO-1	1. Write about some of	Lecture/	Mid-Test 1
	Inductor		the applications of diodes.	Power Point	(Week 9)
	filterLC-		2. What are	Presentation	
	Filter,		theapplications of LC		
			Filters) (1) m
4	Transistor	C0-2	1. Explain CB and CE	Lecture/	Mid-Test 1
	Characteristics ilter		configuration of a transistor	Problem	(Week 9)
	Bipolar Junction		2. A Transistor has a	Solving	
	transistor (BJT)		power rating of 600mW. If the		
	-input		collector-to-emitter voltage is		
	characteristics of		10mA, what would happen to		
	transistor in CB, CE,		the transistor?		
	CC Configuration,				
5	Relations between	C0-2	1. Explain the relations	Lecture/	Mid-Test 1
	the gains		Between gains	Discussion	(Week 9)
6	Characteristics of	C0-2	1. Obtain the	Lecture/	Mid-Test 1
	IFET, MOSFET		characteristics of JFET	PowerPoint	(Week 9)
	Enhancement and		2. Explain	Presentation	
	depletion),		thecharacteristics of		
	characteristics of		UJT		
	UJT		,		
7	Biasing and Stability	C0-3	1. Define biasing	Lecture/	Assignment
	Need for biasing,		2. Explain the criteria for	Discussion	&case study
	Criteria for fixing		fixingthe operating point		(Week 7 - 8)
	the operating point,				(
	thermal run away				
8	Thermal stability,	C0-3	1. What is meant by	Lecture/	Quiz
	stabilization		thermal stability in a	Discussion	(Week 1 - 7)
	techniques		transistor?		
	1		2. A better thermal		
			stability can be achieved in the		
			emitter-feedback bias circuits		
			than the fixed-bias circuits.		
			Why?		
9			MID EXAMINATIONS		
10	SMALL SIGNAL	C0-4	Obtain the h parameters of	Lecture/	Mid-Test 2
	AMPLIFIERS:		the transistor	Discussion	(Week 18)
	h-parameter				
	representation of				
	Transistor, Analysis				
	of single stage				
	transistor amplifier				
	using h-parameters				
11	Comparison of	C0-4	compare configuration of	Lecture/	Assignment
	transistor	-	transistor in terms of A _v , A _I , R _i ,	Discussion	(Week 12 -
	configurations in		R _o	21000001011	13)
	terms of A _v , A _I , R _i , R _o				10)

12	FEEDBACK	C0-5	1. What is the ratio of the	Lecture/	Mid-Test 2
	AMPLIFIERS:		half-power frequencies with	Problem	(Week 18)
	Concept of feedback,		feedback to those without	Solving	
	classification of		feedback		
	feedback amplifiers,		2. What are the basic		
			characteristics of an ideal		
13	General	C0-5	operational amplifier?	Logtuno /	Mid-Test 2
13	characteristics of	C0-5	1. Since negative amplifier in an amplifer reduces transfer	Lecture/ Problem	(Week 18)
	negative feedback		gain, why is it used?	solving	(WEER 10)
	amplifiers,		2. Define the input and output	Solving	
	diffpiffers,		offset voltages of an practical		
			operational amplifier.		
14	effect of negative	C0-5	1. For an output of 36 V	Lecture/	Mid-Test 2
	feedback on input		with 1 percent second	Discussion	(Week 18)
	and output		harmonic distrortion what is		
	Resistances		the input voltage		
			2. How does the		
			negative feedback in an		
			amplifier reduce the effect of		
			noise the amplifier circuit?		
15	OSCILLATORS:	CO-5	1. Explain the working of	Lecture/	Quiz
	Condition for		a RC Phase shift	Discussion	(Week 10- 14)
	oscillations, RC		oscillator		
	Phase				
	shift oscillator				
	withTransistor				
16	Wein Bridge	C0-5	1. Explain the working	Lecture/	Seminar
	Oscillator,		ofa wein bridge	Problem	(Week 16)
			oscillator 2.	Solving	
17	Hartley and Colpitts		1. Describe the working	Lecture/	
1′	Oscillators		of Hartley oscillator	Discussion	
	O J CIII a LOI J		2. Explain the working of	Discussion	
			colpitts oscillator		
18			MID EXAMINATIONS		
10.0			END EVAMINATIONS		
19 & 20			END EXAMINATIONS		