SCHEME OF COURSE WORK

Course Details:

Course Title	Transforms Techniques and Complex Va	riables						
Course Code	22BM1106	L	Т	Р	С	:3003		
Program:	B.Tech.							
Specialization:	Electrical and Electronics Engineering							
Semester	III Semester							
Prerequisites	Calculus, Limit, continuity, differentiation							
	• Integrals							
Courses to which it is a prerequisite Digital signal processing								

PROGRAM OUTCOMES:

The student of Electrical and Electronics Engineering at the end of the program will be able to:

- 1. PO-1: Apply the knowledge of basic sciences and electrical and electronics engineering fundamentals to solve the problems of power systems and drives.
- 2. PO-2: Analyze power systems that efficiently generate, transmit and distribute electrical power in the context of present Information and Communications Technology.
- **3.** PO-3: Design and develop electrical machines and associated controls with due considerations to societal and environmental issues.
- 4. PO-4: Design and conduct experiments, analyze and interpret experimental data for performance analysis.
- 5. PO-5: Apply appropriate simulation tools for modeling and evaluation of electrical systems.
- 6. PO-6: Apply the electrical engineering knowledge to assess the health and safety issues and their consequences.
- 7. PO-7: Demonstrate electrical engineering principles for creating solutions for sustainable development.
- 8. PO-8: Develop a techno ethical personality that help to serve the people in general and Electrical and Electronics Engineering in particular.
- **9.** PO-9: Develop leadership skills and work effectively in a team to achieve project objectives.
- 10. PO-10: Communicate effectively in both verbal and written form.
- **11.** PO-11: Understand the principles of management and finance to manage project in multi disciplinary environments.
- **12.** PO-12: Pursue life-long learning as a means of enhancing the knowledge and skills.

- 1 Calculate Fourier series and Fourier transform of a function.
- 2 Classify and solve partial differential equations.
- 3 Apply the z- transform technique and use it to solve difference equations.
- 4 Examine continuity, differentiability and analyticity of a complex valued function.
- 5 Evaluate the integral of a complex function over a simple closed contour.

Course Outcome versus Program Outcomes:

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO-1	3	3										
CO-2	3	2										
CO-3	3	3										
CO-4	3	3										
CO-5	3	3										

3 - Strongly correlated, 2 - Moderately correlated, 1-Weakly correlated, Blank - No correlation

Assessment Methods: Assignment / Quiz / Seminar / Case Study / Mid-Test / End Exam

Teaching-Learning and Evaluation

Week	TOPIC / CONTENTS	Course Outcomes	rse Sample questions comes		Assessment Method & Schedule				
				G STRATE GY					
1	Dirichlet's conditions, Fourier series, conditions for a Fourier expansion, functions of any period	CO-I	Determine the Fourier series of $f(x) = x \text{ in } (0, 2\pi).$	Lecture / Problem solving	Assignment (Week 2 - 4) / Mid-Test 1 (Week 9)				
2	Fourier series of odd and even functions - half range series	CO-I	Determine the Fourier sine series of $f(x)=2-x \text{ in } (0,\pi).$	Lecture / Problem solving	Assignment (Week 2 - 4) / Mid-Test 1 (Week 9)				
3	Fourier integrals, Fourier cosine and sine integrals, Fourier transform	CO-I	Determine the Fourier transform of $f(x) = \begin{cases} x \text{ in } (-1,1) \\ 0, \text{ elsewhere} \end{cases}$	Lecture / Problem solving	Assignment (Week 2 - 4) / Mid-Test 1 (Week 9)				
4	Fourier sine and Fourier cosine transforms and properties, convolution theorem (without proof).	CO-I	Determine the Fourier since transform of $f(x) = e^{-x}$.	Lecture / Problem solving	Assignment (Week 2 - 4) / Mid-Test 1 (Week 9)				
5	First order partial differential equations	CO-II	Determine the partial differential equation corresponding to $z=ax+by$.	Lecture / Problem solving	Mid-Test 1 (Week 9) / Quiz				
6	Solutions of first order linear and nonlinear PDEs	CO-II	Solve $p+q=1$.	Lecture / Problem solving	Mid-Test 1 (Week 9)/ Quiz				
7	Method of Separation of variables	CO-II	Solve by the method of separation of variables $2x\frac{\partial z}{\partial x} - 3y\frac{\partial z}{\partial y} = 0$	Lecture / Problem solving	Mid-Test 1 (Week 9) / Quiz				
8	Solutions of wave, heat and Laplace equations	CO-II	Solve one dimensional wave equation $\frac{\partial^2 y}{\partial x^2} = \frac{1}{c^2} \frac{\partial^2 y}{\partial x^2}$	Lecture / Problem solving	Mid-Test 2 (Week 10) / Quiz				
9	Mid Exam-I								
10	Definition of Z-transform, elementary properties, linearity property	CO-III	Apply the Z-transform to $a_n = n$.	Lecture / Problem solving	Mid-Test 2 (Week 18)/ Assignment (12-14)				
11	damping rule, shifting to the right and left, multiplication by n	CO-III	Apply the Z-transform to $a_n = a^n n$.	Lecture / Problem solving	Mid-Test 2 (Week 18) / Assignment (12-14)				
12	initial value theorem, final value	CO-III	Determine the inverse Z-transform	Lecture / Problem	Mid-Test 2 (Week 18)/				

	theorem, inverseZ-transform,convolution theorem (without proof).		of $\frac{z}{(z-1)(z-2)}$.	solving	Assignment (12-14)				
13	Continuity, differentiation, Cauchy- Riemann equations, analytic functions,	CO-IV	Examine the analyticity of $f(z) = \overline{z}$.	Lecture / Problem solving	Mid-Test 2 (Week 18) / Assignment (12-14)				
14	harmonic functions, finding harmonic conjugate.	CO-IV	Determine the harmonic conjugate of $u = x^2 - y^2$.	Lecture / Problem solving	Mid-Test 2 (Week 18)/ Quiz				
15	Contour integrals, Cauchy's theorem (without proof), Cauchy's integral formula (without proof),	CO-V	Evaluate the integral $\oint_{c t+3} \frac{z}{(z-1)(z-2)} dz$.	Lecture / Problem solving	Mid-Test 2 (Week 18)/ Quiz				
16	Taylor's series, zeros of analytic functions, singularities, Laurent's series, residues	CO-V	Determine the Laurent's series of $f(z) = \frac{1}{(z-1)(z+2)}$ in $0 < z < 1$.		Mid-Test 2 (Week 18)/ Quiz				
17	Cauchy residue theorem (without proof)	CO-V	Evaluate $\oint_{c} \frac{\sin \pi z^{2} + \cos \pi z^{2}}{(z-1)^{2}(z-2)} dz \text{ where}$ C is the circle $ z = 3$ using residue theorem		Mid-Test 2 (Week 18)				
18	Mid Exam-II								
19/20	END EXAM								