SCHEME OF COURSE WORK

Course Details:

Course Title	ODE and Vector Calculus							
Course Code	22BM1103							
Program:	B.Tech.							
Specialization:	Electrical and Electronics Engineering							
Semester	II Semester							
Prerequisites	Basic formulae of differentiation and integrations.							
	• Vectors, differentiation and integrations.							
Courses to which it is a prerequisite : For all Engineering Courses								

PROGRAM OUTCOMES:

The student of Electrical and Electronics Engineering at the end of the program will be able to:

- 1. PO-1: Apply the knowledge of basic sciences and electrical and electronics engineering fundamentals to solve the problems of power systems and drives.
- 2. PO-2: Analyze power systems that efficiently generate, transmit and distribute electrical power in the context of present Information and Communications Technology.
- 3. PO-3: Design and develop electrical machines and associated controls with due considerations to societal and environmental issues.
- **4.** PO-4: Design and conduct experiments, analyze and interpret experimental data for performance analysis.
- 5. PO-5: Apply appropriate simulation tools for modeling and evaluation of electrical systems.
- **6.** PO-6: Apply the electrical engineering knowledge to assess the health and safety issues and their consequences.
- 7. PO-7: Demonstrate electrical engineering principles for creating solutions for sustainable development.
- **8.** PO-8: Develop a techno ethical personality that help to serve the people in general and Electrical and Electronics Engineering in particular.
- 9. PO-9: Develop leadership skills and work effectively in a team to achieve project objectives.
- 10. PO-10: Communicate effectively in both verbal and written form.
- 11. PO-11: Understand the principles of management and finance to manage project in multi disciplinary environments.
- 12. PO-12: Pursue life-long learning as a means of enhancing the knowledge and skills.

Course Outcomes (COs): At the end of the Course, Student will be able to:

1	Solve first order differential equations arising in various engineering fields
2	Evaluate linear differential equations of higher order and use the knowledge to study certain
	problems that arise in engineering
3	Illustrate the techniques of Laplace transform to solve problems that arise engineering.
4	Summarize various concepts of vector differentiation
5	Use calculus to vector functions and interpret vector integral theorems

Course Outcome versus Program Outcomes:

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO-1	3	3										
CO-2	3	2										
CO-3	3	3										
CO-4	3	3										
CO-5	3	3										

3 - Strongly correlated, 2 - Moderately correlated, 1-Weakly correlated, Blank - No correlation

Assessment Assignment / Quiz / Seminar / Case Study / Mid-Test / End	
--	--

Teaching-Learning and Evaluation

Teaching-Learning and Evaluation

Week	TOPIC / CONTENTS	Course Outcomes	Sample questions	TEACHIN G- LEARNIN G STRATE GY	Assessment Method & Schedule
1	Linear and Bernoulli differential equations.	CO-I	Solve $\frac{dy}{dt}$ sint+2ycost=cos ² t Solve $\frac{dy}{dx}$ +8x ⁶ y = $e^x y^3$	Lecture / Problem solving	Assignment (Week 2 - 4) / Mid-Test 1 (Week 9)
2	Orthogonal trajectories exact differential equations.	CO-I	Determine the orthogonal trajectories $ \text{of } y = cx^3 + 2 $	Lecture / Problem solving	Assignment (Week 2 - 4) / Mid-Test 1 (Week 9)
3	Equations reducible to exact equations.	CO-I	Solve $ \left(\frac{y}{x} + 6x\right) dx + \left(\ln x - 2\right) dy = 0 $	Lecture / Problem solving	Assignment (Week 2 - 4) / Mid-Test 1 (Week 9)
4	simple electric circuits, Newton's law of cooling.	CO-I	A body originally at $80^{\circ}C$ cools down to $60^{\circ}C$ in 20 minutes, the temperature of the air being $40^{\circ}C$. Determine the temperature of the body after 40 minutes from the original?	Lecture / Problem solving	Assignment (Week 2 - 4) / Mid-Test 1 (Week 9)
5	Linear differential equations of higher order with constant coefficients,	CO-II	Solve $2y''+19y'+39y'+9y=0$	Lecture / Problem solving	Mid-Test 1 (Week 9) / Quiz
6	Complete solution, operator D, rules	CO-II	Solve $2y''+19y'+39y'+9y=0$.	Lecture / Problem	Mid-Test 1 (Week 9)/

	for finding the complementary			solving	Quiz				
	function,								
7	Inverse operator, rules for finding the particular integral, method of variation of parameters Cauchy's linear equation, L-C-R circuit problems.	CO-II	Solve $2x^3y'''+19x^2y''+39xy'+9y=0$	Lecture / Problem solving	Mid-Test 1 (Week 9) / Quiz				
8	Mid Exam-I								
0		COM		Lecture /	Mid-Test 2				
9	Definition of Laplace transform, existence conditions, properties of Laplace transform, periodic functions,	CO-III	Determine Laplace transform of $g(t) = \begin{cases} 1, & 0 \le t \le a, \\ \frac{(b-t)}{(b-a)}, & a < t \le b, \end{cases}$	Problem solving	(Week 18)/ Assignment (12-14)				
			0, if t>b						
10	Transforms of derivatives, transforms of integrals, multiplication by t, division by t, evaluation of integrals by Laplace transforms,	CO-III	Solve $y''(t)+y(t)=g(t)$, $y(0)=0$, $y'(0)=0$, $g(t)=\begin{cases} t & \text{if } 0 \le t < 5 \\ 0 & \text{if } 5 \le t < \infty. \end{cases}$	Lecture / Problem solving	Mid-Test 2 (Week 18)/ Assignment (12-14)				
11	Inverse Laplace transforms, convolution theorem (without proof), unit step function, unit impulse function, applications to ordinary differential equations.	CO-III	Show that $L^{-1} \left[\frac{(s-a)}{(s-a)^2 + b^2} \right] = e^{at} \operatorname{cosbt}$	Lecture / Problem solving	Mid-Test 2 (Week 18)/ Quiz				
12	Scalar and vector point functions, gradient, directional derivative, divergence and curl.	CO-IV	Determine the gradient of the following function at the given point $h(x, y) = 5500 - 0.001x^2 - 0.004y^2$ and $p = (200, 800, 900)$	Lecture / Problem solving	Mid-Test 2 (Week 18)/ Quiz				
13	vector identities: del applied twice to point functions, del applied to products of point functions	CO-IV	Show that $Curl(graf) = 0$	Lecture / Problem solving	Mid-Test 2 (Week 18)/ Quiz				
14	Line integral - circulation, work done, surface integral-flux, volume integral.	CO-V	Determine work done if $F = \langle 5xy, 2y^2 \rangle = 5xyi + 2y^2j$ and given path $y = 6x^2$ from $(0,0)$ to $(1,6)$.	Lecture / Problem solving	Mid-Test 2 (Week 18)/ Quiz				
15	Green's theorem in the plane, Stoke's theorem and the Divergence theorem (without proof).	CO-V	Using Green'theorem evaluate $\int_{C} (ax+2y)dx+(bx+3y)dy \text{ where } C \text{ is the unit circle } x^2+y^2=1$	Lecture / Problem solving	Mid-Test 2 (Week 18)				
16		Mid	Exam-II	T					
17/18	END EXAM								