SCHEME OF COURSE WORK

Course Details:

Course Title	Calculus and Linear Algebra							
Course Code	22BM1101 L T P C 3 0 0 3							
Program:	B.Tech.							
Specialization:	Electrical and Electronics Engineering							
Semester	I Semester							
Prerequisites	Basic formulae of differentiation, product rule, and quotient rule. Basic Integration formulae, integration by parts, definite integrals and properties solve a linear system of equations analytically and compute eigen values and eigen vectors of a square matrix							
Courses to which it is a prerequisite : For all Engineering Courses								

PROGRAM OUTCOMES:

The student of Electrical and Electronics Engineering at the end of the program will be able to:

- PO-1: Apply the knowledge of basic sciences and electrical and electronics engineering fundamentals to solve the problems of power systems and drives.
- PO-2: Analyze power systems that efficiently generate, transmit and distribute electrical power in the context of present Information and Communications Technology.
- PO-3: Design and develop electrical machines and associated controls with due considerations to societal and environmental issues.
- PO-4: Design and conduct experiments, analyze and interpret experimental data for performance analysis.
- PO-5: Apply appropriate simulation tools for modeling and evaluation of electrical systems.
- PO-6: Apply the electrical engineering knowledge to assess the health and safety issues and their consequences.
- PO-7: Demonstrate electrical engineering principles for creating solutions for sustainable development.
- PO-8: Develop a techno ethical personality that help to serve the people in general and Electrical and Electronics Engineering in particular.
- PO-9: Develop leadership skills and work effectively in a team to achieve project objectives.
- PO-10: Communicate effectively in both verbal and written form.
- PO-11: Understand the principles of management and finance to manage project in multi disciplinary environments.
- PO-12: Pursue life-long learning as a means of enhancing the knowledge and skills.

Course Outcomes (COs): At the end of the Course, Student will be able to

1	Test the convergence of an infinite series and express a function in terms of power
	series.
2	Apply the techniques of multivariable differential calculus to determine extrema and
	series expansions of a function of several variables.
3	Extend the concept of integration to higher dimensions and use it to solve problems in
	engineering.
4	Solve a linear system of equations analytically and compute eigenvalues and eigen
	vectors of a square matrix
5	Diagonalize a matrix and identify the nature of a quadratic form.

Course Outcome versus Program Outcomes:

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO-1	3	3										
CO-2	3	2										
CO-3	3	3										
CO-4	3	3										
CO-5	3	3										

3 - Strongly correlated, 2 - Moderately correlated, 1-Weakly correlated, Blank - No correlation

Assessment Methods:	Assignment / Quiz / Seminar / Case Study / Mid-Test / End Exam

Teaching-Learning and Evaluation

Week	TOPIC / CONTENTS	Cour se Outc omes	Sample questions	TEACHING- LEARNING STRATEGY	Assessment Method & Schedule
1	Sequence, infinite series tests for convergence: comparison test, ratio Test, root test.	CO-1	Test for the converge the series $\sum_{n=1}^{\infty} \left(\frac{n!3^n}{n^n} \right)$	Lecture / Problem solving	Assignment (Week 2 - 4) / Quiz-I (Week -8)/ Mid- Test 1 (Week 9)
2	Rolle's theorem, Lagrange's and Cauchy's mean value theorem	CO-1	Apply Lagrange's Mean Value theorem for $f(x) = (x-1)(x-2)(x-3)$ in [0,4]	Lecture / Problem solving	Assignment (Week 2 - 4)/ Quiz -I (Week -8)/ Mid- Test 1 (Week 9)
3	Expansions of functions: Taylor's and Maclaurin's series	CO-1	Use Taylor's series expansion for $\sin^{-1} x$ in powers of x and y up to third degree	Lecture / Problem solving	Mid-Test 1 (Week 9)/ Assignment (Week 2 - 4)/ Quiz -I (Week -8)
4	Total derivative, change of variables,	CO-2	If $x = u(1-v)$, $y = uv$,	Lecture /	Mid-Test 1 (Week 9)/

	Jacobin's		the modern determine a(um)	Problem solving	Quiz -I
	vaccom s		then determine $\frac{\partial(u,v)}{\partial(x,y)}$	Troolem sorving	(Week -8)
					(
5	Taylor's theorem for functions of two	CO-2	Determine the Taylor's series	Lecture /	Mid-Test 1
	variables		expansion of $e^x \sin y$ in	Problem solving	(Week 9) /
			powers of x and y	8	Quiz -I
			powers or wand y		(Week -8)
6	Maxima and minima of functions of two	CO-2	In the plane triangle ABC,	Lecture /	Mid-Test 1
	variables, Lagrange method of undetermined		determine the maximum value	Problem solving	(Week 9)/
	multipliers		determine the maximum value		Quiz -I
			of $\cos A \cos B \cos C$		(Week -8)
7	N. G. L. G. L. B. H. L.	00.2) (1 m - 1
7	Non Cartesian Coordinates, Double integrals,	CO-3	Evaluate $\int_{-1}^{2} \int_{x^2}^{x+2} dy dx$.	Lecture /	Mid-Test 1
	Change of order of integration.		1 1	Problem solving	(Week 9) / Quiz
					(Week -8)
8			Mid-Test 1		
9	Double integral in polar co-ordinates	CO-3	Evaluate	Lecture /	Mid-Test 2
	Triple integrals, Change of variables in	00-3		Problem solving	(Week 18) /
	double integral.		$\int_0^\infty \int_0^\infty e^{-(x^2+y^2)} dxdy$ by	Troolem sorving	Quiz -II
			0 0		(Week -17)/
			changing to polar coordinates.		Assignment (12-
					14)
10	Double integral in polar co-ordinates	CO-3	Evaluate	Lecture /	Mid-Test 2
	Triple integrals, Change of variables in			Problem solving	(Week 18) /
	double integral.		$\int_0^\infty \int_0^\infty e^{-(x^2+y^2)} dx dy \text{ by}$		Quiz -II
			changing to polar coordinates.		(Week -17)/
			changing to polar coordinates.		Assignment (12-
					14)
11	Change of variables in triple integral, Simple	CO-3	Evaluate	Lecture /	Assignment
	Applications of multiple integrals.		$\begin{bmatrix} 1 & x & x+y & \dots \end{bmatrix}$	Problem solving	(Mid-Test 2
			$\int_{x=0}^{1} \int_{y=0}^{x} \int_{z=0}^{x+y} x dz dy dx.$		(Week 18) /
					Quiz -II (Week -17)/
					Assignment (12-
					14)
12	Rank of a matrix (echelon form and normal	CO-4	Determine the rank of the	Lecture /	Mid-Test 2
	form		$\begin{bmatrix} 1 & 2 & 3 \end{bmatrix}$	Problem solving	(Week 18) /
			matrix 1 4 2		Quiz -II
					(Week -17)/ Assignment (12-
			[2 6 5]		14)
13	Consistency of linear system of equations	CO-4	Discuss the consistency of linear	Lecture /	Mid-Test 2
			systemof equations	Problem solving	(Week 18) /
			4x - 2y + 6z = 8,		Quiz -II
			x + y - 3z = -1,		(Week -17)
			15x - 3y + 9z = 21		
14	Eigen values and eigen vectors of a matrix,	CO-4	Determine the eigen values	Lecture /	Mid-Test 2
	properties of eigen values		and eigen vectors for the	Problem solving	(Week 18) /
			matrix		Quiz -II
					(Week -17)

15	Cayley-Hamilton theorem (without proof), finding inverse and power of a matrix by Cayley-Hamilton theorem	CO-5	$\begin{bmatrix} 1 & 2 & 3 \\ 1 & 4 & 2 \end{bmatrix},$ $\begin{bmatrix} 2 & 6 & 5 \end{bmatrix}$ Two eigen values of the matrix $A = \begin{bmatrix} 2 & 2 & 1 \\ 1 & 3 & 1 \end{bmatrix}$ are $\begin{bmatrix} 1 & 2 & 2 \end{bmatrix}$ equal to 1 each. Find the eigen value of A^{-1} $\begin{bmatrix} 1 & 2 & 3 \end{bmatrix}$ Using Cayley –Hamilton theorem find the inverse of $\begin{bmatrix} 1 & 1 & 3 \end{bmatrix}$	Lecture / Problem solving	Mid-Test 2 (Week 18) / Quiz -II
16	Reduction to diagonal form,	CO-5	$\begin{bmatrix} 1 & 1 & 3 \\ 1 & 3 & -3 \\ 2 & -4 & -4 \end{bmatrix}, \text{ find } A^4$ Determine the eigen values and eigen vectors and hence reduce the matrix $\begin{bmatrix} -1 & 2 & -2 \end{bmatrix}$	Lecture / Problem solving	(Week -17) Mid-Test 2 (Week 18) / Quiz -II (Week -17)
17	Reduction of quadratic form to canonical form, nature of the quadratic form	CO-5	$A = \begin{bmatrix} -1 & 2 & -2 \\ 1 & 2 & 1 \end{bmatrix} \text{ to a}$ $\begin{bmatrix} -1 & -1 & 0 \end{bmatrix}$ diagonal form Discuss the nature of the	Lecture /	Mid-Test 2 (Week 18) /
	form, nature of the quadratic form		quadratic form by reducing to canonical form $3x^2 + 5y^2 + 3z^2 - 2yz + 2zx - 2xy$	Problem solving	Quiz -II (Week -17)
18	Mid-Test 2				
19/20	END EXAM				