PYTHON PROGRAMMING FOR COMMUNICATION ENGINEERING APPLICATIONS LAB

Course Code:22EC1112

L T P C 0 0 3 1.5

Prerequisites: Signals and Systems, Analog and Digital Communications.

Course Outcomes: At the end of the Course the student will be able to

- CO1: Understand the basic knowledge of Python Programming tool.(L2)
- CO2: Examine different signals and compute the signal parameters.(L3)
- CO3: Understand sampling process and its implications.(L2)
- CO4: Analyze audio signal spectrum in frequency domain.(L4)
- CO5: Understand data transmission using socket programming in python.(L2)

List of experiments:

1. Python Introduction 1 – Variables, data types

- a. Write a program to perform any 5 built-in functions by taking any list.
- b. Write a program to create tuples (name, age, address, college) for at least two members
- c. and concatenate the tuples and print the concatenate tuples.
- d. Write a program to count the number of vowels in a string using sets.
- e. Write a program to add a new key-value pair to an existing dictionary.

2. Python Introduction 2 – Control flow

- a. Write a program to display all prime numbers within an interval of 20 and 50.
- b. Write a program which creates an adder, given a value using lambda.

3. Python Introduction 3 – Functions, Arrays, Matrix operations

- a. Write a program to define a function for finding maximum of three numbers using default
- b. arguments.
- c. Write a program to add, transpose and multiply two matrices using numpy.
- 4. Write a program to generate basic signals: Sinusoidal and Complex exponential signals.
- 5. Write a program to analyse basic operations on Signals: Time shifting, Time Reversal, Amplitude scaling and Time scaling.
- 6. Write a program to plot the probability density function of
 - a. normal or Gaussian distribution.
 - b. Exponential distribution
- 7. Write a program to compute energy and power of defined signals.
- 8. Write a program to compute Auto correlation and cross correlation of signals.
- 9. Write a program to analyse the implications of Sampling theorem at variable sampling rates for a sine wave input signal.
- 10. Write a program to compute Fourier Series Analysis of a square wave Signal.
- 11. Fourier Transform of a signal:
 - a. Write a function to calculate DFT of the signal (sum of 3 sinusoidal signals) and plot the spectrum.
 - b. Verify the result using IDFT.
- 12. Write a program to

- a. visualise an audio sample file(.wav) as time series data.
- b. to identify the frequency components present in the generated audio file.
- 13. a. Write a program to generate an audio signal and write the signal as .wav file format. Write python commands to read and listen to the generated audio file.
- b. Write a program to determine the correlation between generated audio signals.
- 14. Write a program to transmit / receive data through cloud using socket programming (Server-Client model).

Note: Any TWELVE of the experiments are to be conducted.
