## SCHEME OF COURSE WORK

#### **Course Details:**

| <b>Course Title</b>                   | : DATA MINING  |   |              |
|---------------------------------------|----------------|---|--------------|
| <b>Course Code</b>                    | : 22CD1103     |   | L T P C 3003 |
| Program:                              | : B.Tech.      |   |              |
| Specialization                        | : Data Science |   |              |
| :                                     |                |   |              |
| Semester                              | : 4th Semester |   |              |
| Prerequisites                         |                |   |              |
| Courses to which it is a prerequisite |                | : |              |

#### **Course Outcomes (COs):**

| 1 | Interpret the given data statistically.                 |  |  |
|---|---------------------------------------------------------|--|--|
| 2 | Classify data using various Classification techniques.  |  |  |
| 3 | Apply Association rule mining to find frequent patterns |  |  |
| 4 | Build models using unsupervised learning techniques.    |  |  |
| 5 | Apply different techniques for Anomaly Detection.       |  |  |

#### **Program Outcomes (POs):**

A graduate of data mining Specialization will be able to

|    | Graduates will be able to apply the knowledge of Mathematics, Science, Engineering Fundamentals, Principles of Computer Science and Engineering and Data Science to solve complex problems in different domains. |  |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|    | Graduates can identify a problem, conduct data analysis experiments to interpret data, and formulate appropriate strategies to evolve solution using the basic principles of science and engineering.            |  |
| 3  | Graduates will have the ability to design a component or a product applying all the relevant standards and with realistic constraints, including public health, safety, culture, society and environment.        |  |
|    | Graduates will be able interpret data, extract meaningful information, and assess findings as per the prevailing research methods.                                                                               |  |
| 5  | Graduates will be able to choose and apply new tools and innovative methodologies necessary for engineering practice to solve data-driven problems.                                                              |  |
| 6  | Graduates will be able to analyze the impact of data analytic systems on individuals, organizations, society and design appropriate solutions related to society health and safety.                              |  |
| 7  | Graduates will have adaptive thinking and adaptability in relation to environmental context and sustainable development                                                                                          |  |
|    | Graduates will be able to have clear understanding of professional thinking and innovation to provide more economical and effective solutions.                                                                   |  |
|    | Graduates will be able to have cross cultural competency exhibited by working as a member or in teams identifying the significance of each individual's contribution.                                            |  |
|    | Graduates will be able to have a good working knowledge of communicating in English – communication with engineering community and society                                                                       |  |
|    | Graduates will be able to have good cognitive load management skills and manage data science projects adhering to financially viable options                                                                     |  |
| 12 | Graduates will engage themselves in independent and continuous learning in the broad context of data                                                                                                             |  |
|    |                                                                                                                                                                                                                  |  |

science and other computer Science related domains.

### **Course Outcome** versus **Program Outcomes:**

| COs  | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |
|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO-1 | S   | M   |     | M   |     |     |     |     |     |      |      | S    |
| CO-2 | S   | M   |     | M   | M   |     |     |     |     |      |      | S    |
| CO-3 | S   | S   | M   | S   | M   |     |     |     |     |      | S    | S    |
| CO-4 | S   | S   | M   | S   | S   |     |     |     |     |      | S    | S    |
| CO-5 | M   | M   | M   | M   | S   | S   |     |     |     |      | M    | M    |

S - Strongly correlated, M - Moderately correlated, Blank - No correlation

| <b>Assessment Methods:</b> | Assignment / Quiz / Seminar / Case Study / Mid-Test / End |
|----------------------------|-----------------------------------------------------------|
|                            | Exam                                                      |

# Teaching-Learning and Evaluation

| Week | TOPIC / CONTENTS                                                                                                                                     | Course<br>Outcomes | Sample questions                                                                                                           | TEACHING-<br>LEARNING<br>STRATEGY  | Assessment<br>Method &<br>Schedule     |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------------------------------------------------------------------------------------------------------------------------|------------------------------------|----------------------------------------|
|      | Introduction To Data Mining:<br>Data Mining, Data Mining tasks, Types of Data,<br>Data Quality                                                       | COI                | 1.Define Data Science<br>2.Explain Datafication<br>3. Explain roles of data<br>Scientist                                   | Lecture / PPT<br>/Group Discussion | Assignment-<br>1,<br>Test- 1<br>Quiz-1 |
| 2    | Data Processing, Measures of Similarity and Dissimilarity                                                                                            | COI                | <ol> <li>What is Statistical<br/>Inference</li> <li>Define population<br/>and Sample</li> <li>Describe Big data</li> </ol> | Lecture / PPT                      | Assignment-<br>1,<br>Test- 1<br>Quiz-1 |
|      | Exploring Data: Data Set, Summary Statistics, Visualization, OLAP and multidimensional data Analysis.                                                | COI                | Describe in detail data science process with a neat diagram     Explain role of Data scientist in Data science process     | Lecture / PPT                      | Assignment-<br>1,<br>Test- 1<br>Quiz-1 |
| 4    | Classification: Basic Concepts, Decision Trees, and model evaluation: General approach for solving a classification problem, Decision Tree induction | CO2                | Explain     Correlation     analysis and     correlation     coefficient     Explain     descriptive     statistics        | Lecture / PPT                      | Assignment-<br>1, Test- 1<br>Quiz-1    |
| 5    | Model overfitting: Due to presence of noise, due to lack of representation samples, Evaluating the performance of classifier                         | CO2                | 3.                                                                                                                         |                                    |                                        |
| 6    | Rule based classifier, Nearest Neighborhood classifier, Bayesian Classifier                                                                          | CO2                | 4.                                                                                                                         |                                    |                                        |
| 7    | Association analysis: Problem Definition, Frequent Item-set generation, Rule generation, compact representation of frequent item sets                | CO2                | categories of data  2. Write a note on languages for data science  3. Explain the methods to clean the data                | Lecture / PPT                      | Assignment-<br>1, Test- 1<br>Quiz-1    |
| 8    | FP-Growth Algorithm, Handling categorical and continuous attributes, concept hierarchy                                                               | CO2                | 1. What is Z-scores Normalization 2. Explain Advanced Ranking Techniques                                                   | Lecture / PPT                      | Assignment-<br>1, Test- 1<br>Quiz-1    |
| 9    | MID TEST-1                                                                                                                                           |                    |                                                                                                                            |                                    |                                        |

| 10 | sequential patterns: Problem formulation, sequential pattern discovery, Apriori-like method, Candidate generation, Candidate pruning, support counting                                                                                                                                | CO2 | 1. Briefly explain statistical distributions 2. Describe p-test  Lecture / PPT Assignment-1, Test-1 Quiz-1                                               |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| 11 | Problem formulation, sequential pattern discovery, Apriori                                                                                                                                                                                                                            | CO2 | 1. Explain different chart types for visualization 2. What is Exploratory Data Analysis  Lecture / PPT 1, Test- 1 Quiz-1                                 |
| 12 | Clustering: Overview, Types of Clustering, Types of clusters, K-means, Basic Agglomerative Hierarchical clustering algorithm, DBSCAN                                                                                                                                                  | CO4 | 1. Explain taxonomy of models 2. How are models developed are evaluated Lecture / PPT Assignment-2, Test- 2 Quiz-2                                       |
| 13 | Cluster evaluation: Supervised and unsupervised cluster evaluation.                                                                                                                                                                                                                   | CO4 | 1. Explain Linear Regression with example 2. What is Gradient Descent Lecture / PPT Assignment-2, Test-2 Quiz-2                                          |
| 14 | Anomaly detection: Preliminaries: Causes of Anomalies, Approaches of Anomaly Detection, Issues.                                                                                                                                                                                       | CO5 | 3.                                                                                                                                                       |
| 15 | Statistical approaches: Detecting outliers in a univariate Normal Distribution, Outliers in a Multivariate Normal Distribution, A mixture model approach for anomaly Detection, Proximitybased outlier detection, Density-based outlier detection, Clustering-based outlier detection | COS | 1. Explain Classification 2. Describe Logistic Regression with example 3. How are decision Trees constucted  Lecture / PPT Assignment- 2, Test- 2 Quiz-2 |
| 16 | MID TEST-2                                                                                                                                                                                                                                                                            |     |                                                                                                                                                          |
| 17 | END EXAM                                                                                                                                                                                                                                                                              |     |                                                                                                                                                          |