SCHEMEOFCOURSE WORK

CourseTitle	BASIC ELECTRICAL AND ELECTRONICS ENGINEERING						
CourseCode	22EE11D3 LTPC 3003						
Program	B.Tech						
Branch	CSE						
Semester	I						
Prerequisites	Mathematics and Physics						
Coursetowhich itisprerequisite	All advanced courses in electrical&electrical	All advanced courses in electrical&electronics.					

CourseOutcomes(COs):

CO1: Analyze the behavior of an electrical circuit.

CO 2:Measure the performance quantities such as losses, efficiency of DC machines**CO 3:**Measure the performance quantities such as losses, efficiency of AC machines**CO4:**Understandtheimportanceandapplicationofp-njunctiondiode **CO5:**EvaluatetheconfigurationsandapplicationsofOp-Amps.

ProgramOutcomes(POs):

 $A graduate of \quad Computer Science and Engineering will be able to$

PO-1	Graduateswillbeabletoapplytheknowledgeofmathematics, science, engineering fundamentals and principles of Computer Science & Engineering to solve complex problem sindifferent domains
PO-2	Graduates can identify, formulate, study contemporary domain literature and analyse real life problems and make effective conclusions using the basic principles of science and engineering
РО-3	Graduateswillbeina position to design solutionsfor Engineering problemsrequiringindepthknowledgeofComputer Science and design system componentsandprocessesasperstandardswithemphasisonprivacy,security,publichealth andsafety.
PO-4	Graduateswillbeabletoconductexperiments, performanalysis and interpret data asperth eprevailing research methods and to provide valid conclusions.
PO-5	Graduateswillbeabletoselect andapplyappropriatetechniquesandusemodernsoftwaredesignanddevelopmenttools.Th eywillbeableto predict and modelcomplexengineeringactivitieswiththeawarenessofthepracticallimitations.
PO-6	Graduates will be abletocarry out their professional practice in Computer Science&Engineeringbyappropriatelyconsideringandweighingtheissuesrelatedtosoci etyandcultureandtheconsequentresponsibilities.
PO-7	Graduateswouldunderstandtheimpactoftheprofessionalengineeringsolutionsonenvironm entalsafetyandlegalissues
PO-8	Graduateswilltransformintoresponsiblecitizensbyadheringtoprofessionalethics.
PO-9	Graduates will be abletofunctioneffectivelyinalargeteamofmultidisciplinarystreamsconsistingofpersons of diversecultures without forgetting the significance of each individual 'scontribution.
PO-10	Graduates will be able to communicate effectively about complex engineering activities with the engineering community as well as the general society, and will be

	abletopreparereports.			
	Graduateswill be able to demonstrate knowledge and understanding of the			
PO-11	engineeringandmanagementprinciplesandapplythesamewhilemanagingprojectsinmu ltidisciplinaryenvironments.			
	1 2			
PO-12	Graduateswill engage themselves in self and life-long learning in the context of			
10-12	rapidtechnologicalchangeshappeninginComputerScienceandotherdomains.			

$\underline{CourseOutcomeversusProgramOutcomes:}$

COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2	PSO3
CO 1	3	3		3	3	3			2	2					
CO 2	3	3		3	3	3			2	2					
CO 3	3	3		3	3				2	2					
CO 4	3	3		3	3	3			2	2					
CO 5	3	3		3	3				2	2					

S - Strongly correlated, M- $\operatorname{\mathsf{Moderatelycorrelated}}$ - $\operatorname{\mathsf{Nocorrelation}}$

AssessmentMethods	Assignment/Quiz/Seminar/CaseStudy/Mid-Test/EndExam

Teaching-LearningandEvaluation

Week	TOPIC/C ONTENTS	Cours eOutc o mes	Samplequestions	Teaching- learningst rategy	Assessmen t Method &Schedule
1.	BASIC LAWS ANDTHEOREMS Ohm'slaw,Kirchof f'sLaws,seriesand parallelcircuits,so urcetransformati ons,delta- wyeconversion.	CO-1	 a) DefineVoltage,Current,Power,En ergyandStateOhmsLawandKirch offsLaw. b) Write the V-I Characteristics ofR-L-C. c) Find theCurrents in thefollowingcircuit: 	LectureProblem solving	Assignment (Week2) Mid-Test1 (Week 9)Quiz(Week4)
2.	Meshanalysis,nodal analysis,Linearitya ndsuperpositionth eorem	CO-1	$ \begin{array}{c c} 2\Omega & 9\Omega \\ \hline 0 & 0 \end{array} $ $ \begin{array}{c c} 45 \text{ V} & \begin{array}{c} \downarrow \\ \downarrow \\$	LectureProblem solving	Mid-Test1 (Week 9)Quiz(Week4)

			 a) CalculatetheMeshCurrentsintheci rcuitshownintheFig. b) WritethestatementofSuperpositio nTheoremandExplainindetail. c) Explain theprinciple ofLinearity. 		
3.	Thevenin'stheorem, Norton'stheorem,m aximumpowertransf ertheorem withbasicproblems.	CO-1	 a) ApplyThevenin'sTheoremforthefol lowingnetwork: ^{4Ω}	LectureProblem solving	Assignment(Week2)
4.	DCMACHINES: Constructionalfe atures inducedEMFand torqueexpressio ns withsimpleprobl ems	CO-2	a)Explain the principle of operationofaDCmotor. b) Derive the EMF and TorqueequationofaDCMa chine. c)Ashort-shuntcompoundd.cgeneratordeli vers100Atoaloadat 250 V. The generatorhasshuntfield,seriesfiel dandarmatureresistanceof130Ω, 0.1Ωand 0.1Ωrespectively.Calculatethevolt agegeneratedinarmaturewinding. Assume1Vdropperbrush	LectureProblem solving	Mid-Test1 (Week 9)Quiz(Week4)
5.	Differenttypesofex citation,performan cecharacteristicsof differenttypesofdc machines,	CO-2	 a) ExplainaboutDCShuntMotorp erformancecharacteristics. b) DrawtheInternalandExternalC haracteristicsofDCShuntGener atorandexplain. 	LectureProblem solving	Mid-Test1 (Week 9)Quiz(Week4)
6.	3- pointstarter,losses andefficiency,efficie ncybydirectloading withbasicproblems	CO-2	 a) What are the various losses thatcanbedeterminedinaDCMachines? b) Draw and Explain about 3-PointStarterindetail. c) ExplainBraketest on DCShuntMotorwithneatsketch. 	LectureProblem solving	Mid-Test1 (Week9)
7.	ACMACHINES Transformers:C onstructionaldet ails,EMFequatio n, voltageregulatio	CO-3	 a) Describe the operation of a 1- Φtransformer,explainingclearlyt hefunctionsof thedifferentparts.Whyarethecore slaminated? b) Derive the EMF equation of a 1- Φtransformer. 	LectureProblem solving	Assignment(Week2)

			c)Definevoltageregulationofatransfor merandderivetheconditions for i) Zero regulationii)Maximumregulation		
8.	lossesandefficienc y,open/short- circuittestsanddet ermination ofefficiencywithba sicproblems.	CO-3	a) ExplainaboutOC and SC Testfora1-Φtransformer. b) A230/110Vsingle-phasetransformertakesan inputof350 V A at no load and at ratedvoltage. The core loss is 110 W.Findi)theiron-losscomponentofno-load current,ii) themagnetizingcomponentofno-loadcurrentandiii)no-loadpowerfactor.	LectureProblem solving	Mid-Test1 (Week 9)Quiz(Week4)
9.			MIDTEST-1		
10.	ThreePhaseInducti onMotors:Construc tion,working principle,Torquean dTorque- Slipcharacteristics, efficiencywithbasic problems.	CO-3	 a. Compareandcontrastbetweensqu irrel-cageand slipringmotorswithrespecttoconstru ction,operation,andperformanceo fthemachines. b. Explain the concept of RMF andSLIP. c. The frequency of emf in the statorof a 4-pole induction motor is 50Hz, and that in the rotoris 1.5Hz.Compute(i)slip(ii) rotorspeed 	LectureProblem solving	Quiz(Wee k13) Mid-Test2 (Week18)
11.	SynchronousMoto r:Construction, EMFEquation, workingprinciple.	CO-3	 a. ExplaintheConstructionofS ynchronousMotor. b. DerivetheEMFequationofaSy nchronousMotor. c. IsSynchronousMotorSelf-startingornot?Explain. 	LectureProblem solving	Assignment(Week12) Mid-Test2 (Week18)
12.	SEMICONDUCTOR DEVICES P-NJunctiondiode - Basicoperatingpri nciple, current- voltagecharacteris tics,rectifiercircuit s(half-wave,full- wave,rectifierwith filtercapacitor),	CO-4	 a. Explainthebasicoperatingprinci pleofaPNJunctionDiodewithneat sketches. b. DrawtheV-ICharacteristicsofaPNDiode. c. ExplaintheoperationofBridgeR ectifierwithandwithoutCapacit ivefilter. 	LectureProblem solving	Quiz(Wee k13) Mid-Test2 (Week18)
13.	ZenerdiodeasVolta ge Regulator;Metaloxi de semiconductorfield effecttransistors	CO-4	a) ExplaintheconceptofZenerdio de asVoltage Regulator b) ExplaintheoperationofMOSFET	LectureProblem solving	Assignment(Week12) Mid-Test2 (Week18)

	(MOSFET): Operation of NMOSandPMOS			fori)NMOS ii)PMOS						
14.	FETs,MOSFETas an amplifier andswitch	CO-4	b.	ExplainhowFETisusedasanAm plifier. HowMOSFETisusedasbothA mplifierandSwitch.	• •	Lecture Problem solving	Mid-Test2 (Week18)			
15.	OPERATIONALA MPLIFIERS:The IdealOpAmp,TheIn vertingConfigurati on,Theclosedloopg ain,EffectofFiniteop en- loopgain,Theclosed loopgain,	CO-5	b) I c) I	Drawtheblockdiagramofoperation al amplifier and explainitindetail. Describe the ideal characteristics of Op-amp. For the inverting amplifier giventhat R1=1 k Ω and Rf=10 k Ω . Assuming an ideal amplifier, calculate the eoutput voltage for the input of 1 V	:	Lecture Problem solving	Mid-Test2 (Week18)			
16.	The Non InvertingConfigura tion,Characteristic sofNonInvertingCo nfiguration,Effecto ffiniteopenloopgai n	CO-5	i v a t b) I	Forthenon- invertingamplifiergiven that input voltage is 6V andR1=2kΩandRf=10kΩ.Calculate theoutputvoltage. Drawthecircuitsymbolofop- amp.Explainwhatismeanbyinverti ng input and non-invertinginput?	•	Lecture Problem solving	Mid-Test2 (Week18)			
17.	Thevoltagefollowe r,Differenceamplifi ers, A SingleOp- amp differenceamplifier	CO-5	b) I	Whatisvoltagefollower?Explainiti ndetail. Drawthecircuitdiagramofdifferenti alamplifierandexplain?	•	Lecture Problem solving	Mid-Test2 (Week18)			
18.	MIDTEST-2									
19.	SEMESTER ENDEXAM									