SCHEMEOFCOURSE WORK | CourseTitle | BASIC ELECTRICAL AND ELECTRONICS ENGINEERING | | | | | | | |--------------------------------|---|---|--|--|--|--|--| | CourseCode | 22EE11D3 LTPC 3003 | | | | | | | | Program | B.Tech | | | | | | | | Branch | CSE | | | | | | | | Semester | I | | | | | | | | Prerequisites | Mathematics and Physics | | | | | | | | Coursetowhich itisprerequisite | All advanced courses in electrical&electrical | All advanced courses in electrical&electronics. | | | | | | ## CourseOutcomes(COs): **CO1**: Analyze the behavior of an electrical circuit. **CO 2:**Measure the performance quantities such as losses, efficiency of DC machines**CO 3:**Measure the performance quantities such as losses, efficiency of AC machines**CO4:**Understandtheimportanceandapplicationofp-njunctiondiode **CO5:**EvaluatetheconfigurationsandapplicationsofOp-Amps. ## ProgramOutcomes(POs): $A graduate of \quad Computer Science and Engineering will be able to$ | PO-1 | Graduateswillbeabletoapplytheknowledgeofmathematics, science, engineering fundamentals and principles of Computer Science & Engineering to solve complex problem sindifferent domains | |-------|---| | PO-2 | Graduates can identify, formulate, study contemporary domain literature and analyse real life problems and make effective conclusions using the basic principles of science and engineering | | РО-3 | Graduateswillbeina position to design solutionsfor Engineering problemsrequiringindepthknowledgeofComputer Science and design system componentsandprocessesasperstandardswithemphasisonprivacy,security,publichealth andsafety. | | PO-4 | Graduateswillbeabletoconductexperiments, performanalysis and interpret data asperth eprevailing research methods and to provide valid conclusions. | | PO-5 | Graduateswillbeabletoselect andapplyappropriatetechniquesandusemodernsoftwaredesignanddevelopmenttools.Th eywillbeableto predict and modelcomplexengineeringactivitieswiththeawarenessofthepracticallimitations. | | PO-6 | Graduates will be abletocarry out their professional practice in Computer Science&Engineeringbyappropriatelyconsideringandweighingtheissuesrelatedtosoci etyandcultureandtheconsequentresponsibilities. | | PO-7 | Graduateswouldunderstandtheimpactoftheprofessionalengineeringsolutionsonenvironm entalsafetyandlegalissues | | PO-8 | Graduateswilltransformintoresponsiblecitizensbyadheringtoprofessionalethics. | | PO-9 | Graduates will be abletofunctioneffectivelyinalargeteamofmultidisciplinarystreamsconsistingofpersons of diversecultures without forgetting the significance of each individual 'scontribution. | | PO-10 | Graduates will be able to communicate effectively about complex engineering activities with the engineering community as well as the general society, and will be | | | abletopreparereports. | | | | |-------|---|--|--|--| | | Graduateswill be able to demonstrate knowledge and understanding of the | | | | | PO-11 | engineeringandmanagementprinciplesandapplythesamewhilemanagingprojectsinmu ltidisciplinaryenvironments. | | | | | | 1 2 | | | | | PO-12 | Graduateswill engage themselves in self and life-long learning in the context of | | | | | 10-12 | rapidtechnologicalchangeshappeninginComputerScienceandotherdomains. | | | | # $\underline{CourseOutcomeversusProgramOutcomes:}$ | COs | PO 1 | PO 2 | PO 3 | PO 4 | PO 5 | PO 6 | PO 7 | PO 8 | PO 9 | PO 10 | PO 11 | PO 12 | PSO1 | PSO2 | PSO3 | |------|------|------|------|------|------|------|------|------|------|-------|-------|-------|------|------|------| | CO 1 | 3 | 3 | | 3 | 3 | 3 | | | 2 | 2 | | | | | | | CO 2 | 3 | 3 | | 3 | 3 | 3 | | | 2 | 2 | | | | | | | CO 3 | 3 | 3 | | 3 | 3 | | | | 2 | 2 | | | | | | | CO 4 | 3 | 3 | | 3 | 3 | 3 | | | 2 | 2 | | | | | | | CO 5 | 3 | 3 | | 3 | 3 | | | | 2 | 2 | | | | | | S - Strongly correlated, M- $\operatorname{\mathsf{Moderatelycorrelated}}$ - $\operatorname{\mathsf{Nocorrelation}}$ | AssessmentMethods | Assignment/Quiz/Seminar/CaseStudy/Mid-Test/EndExam | |-------------------|--| # **Teaching-LearningandEvaluation** | Week | TOPIC/C
ONTENTS | Cours
eOutc
o
mes | Samplequestions | Teaching-
learningst
rategy | Assessmen
t Method
&Schedule | |------|---|----------------------------|--|---|--| | 1. | BASIC LAWS ANDTHEOREMS Ohm'slaw,Kirchof f'sLaws,seriesand parallelcircuits,so urcetransformati ons,delta- wyeconversion. | CO-1 | a) DefineVoltage,Current,Power,En ergyandStateOhmsLawandKirch offsLaw. b) Write the V-I Characteristics ofR-L-C. c) Find theCurrents in thefollowingcircuit: | LectureProblem solving | Assignment
(Week2)
Mid-Test1
(Week
9)Quiz(
Week4) | | 2. | Meshanalysis,nodal
analysis,Linearitya
ndsuperpositionth
eorem | CO-1 | $ \begin{array}{c c} 2\Omega & 9\Omega \\ \hline 0 & 0 \end{array} $ $ \begin{array}{c c} 45 \text{ V} & \begin{array}{c} \downarrow \\ \\$ | LectureProblem solving | Mid-Test1
(Week
9)Quiz(
Week4) | | | | | a) CalculatetheMeshCurrentsintheci rcuitshownintheFig. b) WritethestatementofSuperpositio nTheoremandExplainindetail. c) Explain theprinciple ofLinearity. | | | |----|--|------|--|---|---| | 3. | Thevenin'stheorem, Norton'stheorem,m aximumpowertransf ertheorem withbasicproblems. | CO-1 | a) ApplyThevenin'sTheoremforthefol lowingnetwork: ^{4Ω} | LectureProblem solving | Assignment(
Week2) | | 4. | DCMACHINES: Constructionalfe atures inducedEMFand torqueexpressio ns withsimpleprobl ems | CO-2 | a)Explain the principle of operationofaDCmotor. b) Derive the EMF and TorqueequationofaDCMa chine. c)Ashort-shuntcompoundd.cgeneratordeli vers100Atoaloadat 250 V. The generatorhasshuntfield,seriesfiel dandarmatureresistanceof130Ω, 0.1Ωand 0.1Ωrespectively.Calculatethevolt agegeneratedinarmaturewinding. Assume1Vdropperbrush | LectureProblem solving | Mid-Test1
(Week
9)Quiz(
Week4) | | 5. | Differenttypesofex
citation,performan
cecharacteristicsof
differenttypesofdc
machines, | CO-2 | a) ExplainaboutDCShuntMotorp erformancecharacteristics. b) DrawtheInternalandExternalC haracteristicsofDCShuntGener atorandexplain. | LectureProblem solving | Mid-Test1
(Week
9)Quiz(
Week4) | | 6. | 3-
pointstarter,losses
andefficiency,efficie
ncybydirectloading
withbasicproblems | CO-2 | a) What are the various losses thatcanbedeterminedinaDCMachines? b) Draw and Explain about 3-PointStarterindetail. c) ExplainBraketest on DCShuntMotorwithneatsketch. | LectureProblem solving | Mid-Test1
(Week9) | | 7. | ACMACHINES Transformers:C onstructionaldet ails,EMFequatio n, voltageregulatio | CO-3 | a) Describe the operation of a 1-
Φtransformer,explainingclearlyt
hefunctionsof
thedifferentparts.Whyarethecore
slaminated? b) Derive the EMF equation of a 1-
Φtransformer. | LectureProblem solving | Assignment(
Week2) | | | | | c)Definevoltageregulationofatransfor
merandderivetheconditions for i)
Zero
regulationii)Maximumregulation | | | |-----|---|------|---|---|---| | 8. | lossesandefficienc
y,open/short-
circuittestsanddet
ermination
ofefficiencywithba
sicproblems. | CO-3 | a) ExplainaboutOC and SC Testfora1-Φtransformer. b) A230/110Vsingle-phasetransformertakesan inputof350 V A at no load and at ratedvoltage. The core loss is 110 W.Findi)theiron-losscomponentofno-load current,ii) themagnetizingcomponentofno-loadcurrentandiii)no-loadpowerfactor. | LectureProblem solving | Mid-Test1
(Week
9)Quiz(
Week4) | | 9. | | | MIDTEST-1 | | | | 10. | ThreePhaseInducti
onMotors:Construc
tion,working
principle,Torquean
dTorque-
Slipcharacteristics,
efficiencywithbasic
problems. | CO-3 | a. Compareandcontrastbetweensqu irrel-cageand slipringmotorswithrespecttoconstru ction,operation,andperformanceo fthemachines. b. Explain the concept of RMF andSLIP. c. The frequency of emf in the statorof a 4-pole induction motor is 50Hz, and that in the rotoris 1.5Hz.Compute(i)slip(ii) rotorspeed | LectureProblem solving | Quiz(Wee
k13)
Mid-Test2
(Week18) | | 11. | SynchronousMoto
r:Construction,
EMFEquation,
workingprinciple. | CO-3 | a. ExplaintheConstructionofS ynchronousMotor. b. DerivetheEMFequationofaSy nchronousMotor. c. IsSynchronousMotorSelf-startingornot?Explain. | LectureProblem solving | Assignment(
Week12)
Mid-Test2
(Week18) | | 12. | SEMICONDUCTOR DEVICES P-NJunctiondiode - Basicoperatingpri nciple, current- voltagecharacteris tics,rectifiercircuit s(half-wave,full- wave,rectifierwith filtercapacitor), | CO-4 | a. Explainthebasicoperatingprinci pleofaPNJunctionDiodewithneat sketches. b. DrawtheV-ICharacteristicsofaPNDiode. c. ExplaintheoperationofBridgeR ectifierwithandwithoutCapacit ivefilter. | LectureProblem solving | Quiz(Wee
k13)
Mid-Test2
(Week18) | | 13. | ZenerdiodeasVolta
ge
Regulator;Metaloxi
de
semiconductorfield
effecttransistors | CO-4 | a) ExplaintheconceptofZenerdio de asVoltage Regulator b) ExplaintheoperationofMOSFET | LectureProblem solving | Assignment(
Week12)
Mid-Test2
(Week18) | | | (MOSFET):
Operation of
NMOSandPMOS | | | fori)NMOS ii)PMOS | | | | | | | |-----|--|------|--------------------------|---|-----|-------------------------------|-----------------------|--|--|--| | 14. | FETs,MOSFETas
an amplifier
andswitch | CO-4 | b. | ExplainhowFETisusedasanAm
plifier.
HowMOSFETisusedasbothA
mplifierandSwitch. | • • | Lecture
Problem
solving | Mid-Test2
(Week18) | | | | | 15. | OPERATIONALA MPLIFIERS:The IdealOpAmp,TheIn vertingConfigurati on,Theclosedloopg ain,EffectofFiniteop en- loopgain,Theclosed loopgain, | CO-5 | b) I
c) I | Drawtheblockdiagramofoperation al amplifier and explainitindetail. Describe the ideal characteristics of Op-amp. For the inverting amplifier giventhat R1=1 k Ω and Rf=10 k Ω . Assuming an ideal amplifier, calculate the eoutput voltage for the input of 1 V | : | Lecture
Problem
solving | Mid-Test2
(Week18) | | | | | 16. | The Non InvertingConfigura tion,Characteristic sofNonInvertingCo nfiguration,Effecto ffiniteopenloopgai n | CO-5 | i
v
a
t
b) I | Forthenon- invertingamplifiergiven that input voltage is 6V andR1=2kΩandRf=10kΩ.Calculate theoutputvoltage. Drawthecircuitsymbolofop- amp.Explainwhatismeanbyinverti ng input and non-invertinginput? | • | Lecture
Problem
solving | Mid-Test2
(Week18) | | | | | 17. | Thevoltagefollowe
r,Differenceamplifi
ers, A SingleOp-
amp
differenceamplifier | CO-5 | b) I | Whatisvoltagefollower?Explainiti
ndetail.
Drawthecircuitdiagramofdifferenti
alamplifierandexplain? | • | Lecture
Problem
solving | Mid-Test2
(Week18) | | | | | 18. | MIDTEST-2 | | | | | | | | | | | 19. | SEMESTER ENDEXAM | | | | | | | | | |