SCHEME OF COURSE WORK

Department of Computer Science and Engineering

Course Details:

COURSE TITLE	Design And Analysis Of Algorithms			
COURSE CODE	22CT1109 L T P C	3003		
PROGRAM	B.TECH			
SPECIALIZATION	CSE			
SEMESTER	IV			
PRE REQUISITES	Problem Solving Using C, Data	Structures &		
	Algorithms			
COURSES TO WHICH IT IS A PRE REQUISITE	NA			

Course Outcomes (COs):

1	Analyze the asymptotic performance of algorithms. (L3)
2	Apply divide-and-conquer and greedy methods to solve various problems.(L3)
3	Solve various optimization problems by applying dynamic programming techniques.(L4)
4	Apply backtracking and branch and bound methods to solve various problems.(L3)
5	Compare P, NP, NP-Hard and NP-Complete problems, and explain approximation algorithms.(L3)

Program Outcomes (POs):

1	Graduates will be able to apply the knowledge of mathematics, science, engineering fundamentals and principles of Computer Science & Engineering to solve complex problems in different domains.
2	Graduates can identify, formulate, study contemporary domain literature and analyze real life problems and make effective conclusions using the basic principles of science and engineering.
3	Graduates will be in a position to design solutions for Engineering problems requiring in depth knowledge of Computer Science and design system components and processes as per standards with emphasis on privacy, security, public health and safety.
4	Graduates will be able to conduct experiments, perform analysis and interpret data as per the prevailing research methods and to provide valid conclusions.
5	Graduates will be able to select and apply appropriate techniques and use modern software design and development tools. They will be able to predict and model complex engineering activities with the awareness of the practical limitations.

6	Graduates will be able to carry out their professional practice in Computer Science & Engineering by appropriately considering and weighing the issues related to society and culture and the consequent responsibilities.
7	Graduates would understand the impact of the professional engineering solutions on environmental safety and legal issues.
8	Graduates will transform into responsible citizens by adhering to professional ethics.
9	Graduates will be able to function effectively in a large team of multidisciplinary streams consisting of persons of diverse cultures without forgetting the significance of each individual's contribution.
10	Graduates will be able to communicate effectively about complex engineering activities with the engineering community as well as the general society, and will be able to prepare reports.
11	Graduates will be able to demonstrate knowledge and understanding of the engineering and management principles and apply the same while managing projects in multidisciplinary environments.
12	Graduates will engage themselves in self and life-long learning in the context of rapid technological changes happening in Computer Science and other domains.

Program Specific Outcomes (PSOs)

PSO1	Design, develop and test system software and application software for distributed and
	centralized computing environments to varying domain and platforms
PSO2	Understand the working of new hardware architectures and components and design solutions
	for real time problems.
PSO3	Model the computer based systems and design algorithms that explores understanding of the
	tradeoffs involved in design choices.

Course Outcome versus Program Outcomes versus Program Specific Outcomes:

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3			3				2		2	2	2		
CO2	3	2			3							3	2		
CO3	3	2			3							3	2		
CO4	3	2			3							3	2		
CO5	3											3	2		

S - Strongly correlated, *M* - *Moderately* correlated, *Blank* - *No correlation*

Assessment Methods Assignment / Quiz / Mid-Test	
---	--

Week	Topic/ Contents	Course Outcomes	Sample questions	Teaching learning strategy	Assessment method & schedule	
1	Basic analysis frame work, pseudo conventions, time and space complexities, asymptotic notations- Theta Notation	CO1	Discuss various asymptotic notations	Lecture Discussion Problem solving	Assignment-1, Test- 1 Quiz-1	
2	Big oh, Big Omega, little oh and little omega notations, simple disjoint set union algorithms	CO1	Write the algorithm for simple union	Lecture Discussion Problem solving	Assignment-1, Test- 1 Quiz-1	
3	Algorithms for simple find, weighted union and collapsing rule for find	CO1	How weighted union and collapsing rule for find are better over simple union and find algorithms	Lecture Discussion Problem solving	Assignment-1, Test- 1 Quiz-1	
4	Depth first spanning trees, bi- connectivity of the graphs, Divide and Conquer: General method	CO1, CO2	Define articulation point. How to delete articulation points using depth first spanning trees Solving different problems using recurrence relations	Lecture Discussion Problem solving	Assignment-1, Test- 1 Quiz-1	
5	Binary Search- Recursive and Iterative methods for binary search, merge sort, quick sort	CO2	State merge sort algorithm and use it to sort some set of integers State quick sort algorithm and use it to sort some set of integers	Lecture Discussion Problem solving	Assignment-1, Test- 1 Quiz-1	
6	0/1 knapsack problem, Huffman codes, Min max algm	CO2	Explain 0/1 knapsack problem with an example	Lecture Discussion Problem solving	Assignment-1, Test- 1 Quiz-1	
7	Minimum cost spanning trees, single source shortest routing problem, Dynamic programming	CO2, CO3	Write single source shortest path problem	Lecture Discussion Problem solving	Assignment- 1,2, Quiz-1, Test-1, 2	
8	0/1 knapsack problem, Matrix chain multiplication, Longest common subsequence,	CO3	Find the optimal Binary search tree for the identifier set (a1, a2, a3) = (do, if, while) with equal probabilities $p(i) = q(i) = 1/7$, for all i	Lecture Discussion Problem solving	Assignment-2, Test- 2, Quiz-2	
9	TEST-1					
10	All pair shortest path problems, travelling sales person problem,	CO3	Explain reliability design Given the cost matrix, solve the traveling sales man	Lecture Discussion Problem solving	Assignment-2, Test- 2, Quiz-2	

Teaching- Learning & Evaluation

			problem using branch and bound technique? Draw the state space tree.		
11	Back tracking, n queens problem, sum of subsets problem	CO 4	Explain the procedure of 8- queens problem	Lecture Discussion Problem solving	Assignment-2, Test- 2, Quiz-2
12	Graph coloring problem, Hamiltonian cycles problem	CO4	Write an algorithm for m- coloring of a graph?	Lecture Discussion Problem solving	Assignment-2, Test- 2, Quiz-2
13	Branch and bound, travelling sales person problem	CO4	Write the procedure for travelling sales person problem with respect to back tracking	Lecture Discussion Problem solving	Assignment-2, Test- 2, Quiz-2
14	0/1 knapsack problem, LC Branch and bound	CO4	Write the procedure for LC branch and Bound solution. Explain 0/1 Knapsack problem with respect to Dynamic programming	Lecture Discussion Problem solving	Assignment-2, Test- 2, Quiz-2
15	FIFO branch and bound solution, NP- Hard and NP- Complete problems: Basic concepts	CO4, CO5	Write the procedure for FIFO branch and bound solution	Lecture Discussion Problem solving	Assignment-2, Test- 2, Quiz-2
16	Non deterministic algorithms,	CO5	Write short notes on NP complete problem	Lecture Discussion Problem solving	Assignment-2, Test- 2, Quiz-2
17	NP hard and NP complete problems, Cooks Theorem	CO5	Write short notes on cooks theorem Discuss SAT problem	Lecture Discussion Problem solving	Assignment-2, Test- 2, Quiz-2
18	TEST-2				